Hot deformation behavior of a high Al-low Si transformation-induced plasticity(TRIP) steel was studied by an MMS-300 thermo-simulation machine at the temperature range of 1050–1200℃ and strain rate range of 0.01–...Hot deformation behavior of a high Al-low Si transformation-induced plasticity(TRIP) steel was studied by an MMS-300 thermo-simulation machine at the temperature range of 1050–1200℃ and strain rate range of 0.01–10s^(-1). The constitutive equations of the TRIP steel were established at high temperature by fitting the strain factor with a sixth-order polynomial. The instability during hot rolling was discussed using processing maps. The results reveal that two types of flow stress curves(dynamic recrystallization and dynamic recovery) were observed during the hot compression of the high Al-low Si TRIP steel. Flow stress decreased with increasing deformation temperature and decreasing strain rate. The predicted flow stress of experimental TRIP steel is in agreement with the experimental values with an average absolute relative error of 4.49% and a coefficient of determination of 0.9952. According to the obtained processing maps, the TRIP steel exhibits a better workability at strain rate of 0.1s^(-1) and deformation temperature of 1200℃ as compared to other deformation conditions.展开更多
The formation of shear bands in metallic glasses(MGs)was examined by tailoring localized complex stress fields(LCSFs).The findings have shown that the LCSFs in MGs can increase the localization of strained atoms and a...The formation of shear bands in metallic glasses(MGs)was examined by tailoring localized complex stress fields(LCSFs).The findings have shown that the LCSFs in MGs can increase the localization of strained atoms and accelerate the release of accumulated deformation energy for initiating a shear band in confined and thin-layered regions.The findings not only add more knowledge to the formation mechanisms of shear bands in MGs,but also provide possible rationale for the discrepancies in the mechanical properties of different-sized MGs.As compared with the bulk samples,the higher strength and larger elastic limits in nanoscaled MGs could be attributed to the elimination of stress-concentrators,which can serve as LCSFs.展开更多
基金financially supported by the National Program on Key Basic Research Project (Grant No. 2011CB606306-2)the National Natural Science Foundation of China (Grant No. 51775102)
文摘Hot deformation behavior of a high Al-low Si transformation-induced plasticity(TRIP) steel was studied by an MMS-300 thermo-simulation machine at the temperature range of 1050–1200℃ and strain rate range of 0.01–10s^(-1). The constitutive equations of the TRIP steel were established at high temperature by fitting the strain factor with a sixth-order polynomial. The instability during hot rolling was discussed using processing maps. The results reveal that two types of flow stress curves(dynamic recrystallization and dynamic recovery) were observed during the hot compression of the high Al-low Si TRIP steel. Flow stress decreased with increasing deformation temperature and decreasing strain rate. The predicted flow stress of experimental TRIP steel is in agreement with the experimental values with an average absolute relative error of 4.49% and a coefficient of determination of 0.9952. According to the obtained processing maps, the TRIP steel exhibits a better workability at strain rate of 0.1s^(-1) and deformation temperature of 1200℃ as compared to other deformation conditions.
基金financially supported by the National Natural Science Foundation of China(Nos.51801049 and 51801174)the State Key Laboratory of Metastable Materials Science and Technology,Yanshan University(No.201809)the Fundamental Research Funds for the Central Universities of China(Nos.PA2019GDZC0096 and JD2019JGPY0015)。
文摘The formation of shear bands in metallic glasses(MGs)was examined by tailoring localized complex stress fields(LCSFs).The findings have shown that the LCSFs in MGs can increase the localization of strained atoms and accelerate the release of accumulated deformation energy for initiating a shear band in confined and thin-layered regions.The findings not only add more knowledge to the formation mechanisms of shear bands in MGs,but also provide possible rationale for the discrepancies in the mechanical properties of different-sized MGs.As compared with the bulk samples,the higher strength and larger elastic limits in nanoscaled MGs could be attributed to the elimination of stress-concentrators,which can serve as LCSFs.