Background:The cardinal features of Parkinson’s disease(PD)are bradykinesia,rigidity and rest tremor.Abnormal activity in the basal ganglia is predicted to underlie the mechanism of motor symptoms.This study aims to ...Background:The cardinal features of Parkinson’s disease(PD)are bradykinesia,rigidity and rest tremor.Abnormal activity in the basal ganglia is predicted to underlie the mechanism of motor symptoms.This study aims to characterize properties of oscillatory activity in the basal ganglia and motor thalamus in patients with PD.Methods:Twenty-nine patients with PD who underwent bilateral or unilateral electrode implantation for subthalamic nucleus(STN)DBS(n=11),unilateral pallidotomy(n=9)and unilateral thalamotomy(n=9)were studied.Microelectrode recordings in the STN,globus pallidus internus(GPi)and ventral oral posterior/ventral intermediate of thalamus(Vop/Vim)were performed.Electromyography of the contralateral limbs was recorded.Single unit characteristics including interspike intervals were analyzed.Spectral and coherence analyses were assessed.Mean spontaneous firing rate(MSFR)of neurons was calculated.Analysis of variance and χ^(2) test were performed.Results:Of 76 STN neurons,39.5% were 4–6 Hz band oscillatory neurons and 28.9% were β frequency band(βFB)oscillatory neurons.The MSFR was 44.2±7.6 Hz.Of 62 GPi neurons,37.1% were 4–6 Hz band oscillatory neurons and 27.4% were βFB neurons.The MSFR was 80.9±9.6 Hz.Of 44 Vop neurons,65.9% were 4–6 Hz band oscillatory neurons and 9%were βFB neurons.The MSFR was 24.4±4.2 Hz.Of 30 Vim oscillatory neurons,70% were 4–6 Hz band oscillatory neurons and 13.3% were β FB neurons.The MSFR was 30.3±3.6 Hz.Further analysis indicated that proportion of βFB oscillatory neurons in STN and GPi was higher than that of similar neurons in the Vop and Vim(P<0.05).Conversely,the proportion of 4–6 Hz band oscillatory neurons and tremor related neurons in the Vim and Vop was higher than that of STN and GPi(P<0.05).The highest MSFR was for GPi oscillatory neurons whereas the lowest MSFR was for Vop oscillatory neurons(P<0.005).Conclusion:The alterations in neuronal activity in basal ganglia play a critical role in generation of parkinsonism.β oscillatory activity is mo展开更多
Two pairs of enantiomers,(−)and(+)-securidanes A(1 and 2)and B(3 and 4)featuring unprecedented triarylmethane(TAM)skeletons,were isolated from Securidaca inappendiculata.Teir structures were established by spectroscop...Two pairs of enantiomers,(−)and(+)-securidanes A(1 and 2)and B(3 and 4)featuring unprecedented triarylmethane(TAM)skeletons,were isolated from Securidaca inappendiculata.Teir structures were established by spectroscopic data,X-ray crystallography,and CD analysis.A plausible biosynthetic pathway for 1−4 based on the co-isolated precursors was proposed.Bioinspired total synthesis of 1−4was completed in high yield,which in turn corroborated the biosynthetic hypothesis.Compounds 1−4 showed good inhibition against protein tyrosine phosphatase 1B(PTP1B).Te molecular docking demonstrated that the strongest inhibitor 3(IC50=7.52�M)reaches deeper into the binding pocket and has an additional H-bond.展开更多
In this study,a novel solid-state alloying approach was adopted to fabricate Al-Mg alloys with high Mg contents(C_(Mg)) by accumulative roll-bonding(ARB)of Al and Mg elemental materials to ultrahigh cycles.Experimenta...In this study,a novel solid-state alloying approach was adopted to fabricate Al-Mg alloys with high Mg contents(C_(Mg)) by accumulative roll-bonding(ARB)of Al and Mg elemental materials to ultrahigh cycles.Experimental results showed that the degree of alloying increased with the increase of ARB cycles and a supersaturatedα-Al solid solution accompanied with nanoprecipitates was formed in the Al-Mg alloys by ARB to 70 cycles.The as-prepared Al-Mg alloys exhibited enhanced mechanical properties,with a maximum tensile strength of∼615 MPa and a tensile elongation of∼10%at C_(Mg)=13 wt.%.The high strength can be attributed to different mechanisms,namely solid solution strengthening,grain boundary strengthening,dislocation strengthening,and precipitation strengthening.The Al-Mg alloys showed increased work hardening with increasing C_(Mg),due to the enhanced formation of nanoprecipitates.Meanwhile,no obvious drop in the intergranular corrosion(IGC)resistance was found in the Al-Mg alloys with C_(Mg) up to 13 wt.%.Moreover,sensitization treatment was found to induce little decrease in the IGC resistance of the Al-Mg alloys with C_(Mg)≤13 wt.%.We found that the excellent IGC resistance was due to the suppression of grain boundary precipitation by the preferred formation of precipitates within the grains that were induced by ARB.Our study indicated the novelty of the present solid-state alloying approach to achieving a superior combination of high mechanical properties and IGC resistance in Al-Mg alloys.展开更多
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.81371256,81171061,81361128012)Ministry of Education of Republic of China(BIBD-PXM2013-014226-07-000084)Seed Grant of International Alliance of Translational Neuroscience(PXM2014-014226-000015).
文摘Background:The cardinal features of Parkinson’s disease(PD)are bradykinesia,rigidity and rest tremor.Abnormal activity in the basal ganglia is predicted to underlie the mechanism of motor symptoms.This study aims to characterize properties of oscillatory activity in the basal ganglia and motor thalamus in patients with PD.Methods:Twenty-nine patients with PD who underwent bilateral or unilateral electrode implantation for subthalamic nucleus(STN)DBS(n=11),unilateral pallidotomy(n=9)and unilateral thalamotomy(n=9)were studied.Microelectrode recordings in the STN,globus pallidus internus(GPi)and ventral oral posterior/ventral intermediate of thalamus(Vop/Vim)were performed.Electromyography of the contralateral limbs was recorded.Single unit characteristics including interspike intervals were analyzed.Spectral and coherence analyses were assessed.Mean spontaneous firing rate(MSFR)of neurons was calculated.Analysis of variance and χ^(2) test were performed.Results:Of 76 STN neurons,39.5% were 4–6 Hz band oscillatory neurons and 28.9% were β frequency band(βFB)oscillatory neurons.The MSFR was 44.2±7.6 Hz.Of 62 GPi neurons,37.1% were 4–6 Hz band oscillatory neurons and 27.4% were βFB neurons.The MSFR was 80.9±9.6 Hz.Of 44 Vop neurons,65.9% were 4–6 Hz band oscillatory neurons and 9%were βFB neurons.The MSFR was 24.4±4.2 Hz.Of 30 Vim oscillatory neurons,70% were 4–6 Hz band oscillatory neurons and 13.3% were β FB neurons.The MSFR was 30.3±3.6 Hz.Further analysis indicated that proportion of βFB oscillatory neurons in STN and GPi was higher than that of similar neurons in the Vop and Vim(P<0.05).Conversely,the proportion of 4–6 Hz band oscillatory neurons and tremor related neurons in the Vim and Vop was higher than that of STN and GPi(P<0.05).The highest MSFR was for GPi oscillatory neurons whereas the lowest MSFR was for Vop oscillatory neurons(P<0.005).Conclusion:The alterations in neuronal activity in basal ganglia play a critical role in generation of parkinsonism.β oscillatory activity is mo
基金Te authors thank Professor S.Q.Tang of Guangxi Normal University for the identifcation of the plant material.Te National Natural Science Foundation(nos.21532007,U1302222,81321092)and the Foundation from the MOST(2012CB721105)of China are gratefully acknowledged.
文摘Two pairs of enantiomers,(−)and(+)-securidanes A(1 and 2)and B(3 and 4)featuring unprecedented triarylmethane(TAM)skeletons,were isolated from Securidaca inappendiculata.Teir structures were established by spectroscopic data,X-ray crystallography,and CD analysis.A plausible biosynthetic pathway for 1−4 based on the co-isolated precursors was proposed.Bioinspired total synthesis of 1−4was completed in high yield,which in turn corroborated the biosynthetic hypothesis.Compounds 1−4 showed good inhibition against protein tyrosine phosphatase 1B(PTP1B).Te molecular docking demonstrated that the strongest inhibitor 3(IC50=7.52�M)reaches deeper into the binding pocket and has an additional H-bond.
基金supported by the National Natural Science Foundation of China(Nos.52175358 and 51371128)。
文摘In this study,a novel solid-state alloying approach was adopted to fabricate Al-Mg alloys with high Mg contents(C_(Mg)) by accumulative roll-bonding(ARB)of Al and Mg elemental materials to ultrahigh cycles.Experimental results showed that the degree of alloying increased with the increase of ARB cycles and a supersaturatedα-Al solid solution accompanied with nanoprecipitates was formed in the Al-Mg alloys by ARB to 70 cycles.The as-prepared Al-Mg alloys exhibited enhanced mechanical properties,with a maximum tensile strength of∼615 MPa and a tensile elongation of∼10%at C_(Mg)=13 wt.%.The high strength can be attributed to different mechanisms,namely solid solution strengthening,grain boundary strengthening,dislocation strengthening,and precipitation strengthening.The Al-Mg alloys showed increased work hardening with increasing C_(Mg),due to the enhanced formation of nanoprecipitates.Meanwhile,no obvious drop in the intergranular corrosion(IGC)resistance was found in the Al-Mg alloys with C_(Mg) up to 13 wt.%.Moreover,sensitization treatment was found to induce little decrease in the IGC resistance of the Al-Mg alloys with C_(Mg)≤13 wt.%.We found that the excellent IGC resistance was due to the suppression of grain boundary precipitation by the preferred formation of precipitates within the grains that were induced by ARB.Our study indicated the novelty of the present solid-state alloying approach to achieving a superior combination of high mechanical properties and IGC resistance in Al-Mg alloys.