Using a stiffness matrix method, we in- vestigate the propagation behaviors of elastic waves in one-dimensional (1D) piezoelectric/piezomagnetic (PE/PM) phononic crystals (PCs) with line defects by calculating e...Using a stiffness matrix method, we in- vestigate the propagation behaviors of elastic waves in one-dimensional (1D) piezoelectric/piezomagnetic (PE/PM) phononic crystals (PCs) with line defects by calculating energy reflection/transmittion coefficients of quasi-pressure and quasi-shear waves. Line defects are created by the re- placement of PE or PM constituent layer. The defect modes existing in the first gap are considered and the influences on defect modes of the material properties and volume fraction of the defect layers, the type of incident waves, the location of defect layer and the number of structural layers are discussed in detail. Numerical results indicate that defect modes are the most obvious when the defect layers are inserted in the middle of the perfect PCs; the types of incidence wave and material properties of the defect layers have important effects on the numbers, the location of frequencies and the peaks of defect modes, and the defect modes are strongly de- pendent on volume fraction of the defect layers. We hope this paper will be found useful for the design of PE/PM acoustic filters or acoustic transducer with PCs structures.展开更多
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ...The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.展开更多
The acceleration of ultrathin targets driven by intense laser pulses induces Rayleigh–Taylor-like instability.Apart from laser and target con-figurations,we find that electron heating and surface rippling,effects inh...The acceleration of ultrathin targets driven by intense laser pulses induces Rayleigh–Taylor-like instability.Apart from laser and target con-figurations,we find that electron heating and surface rippling,effects inherent to the interaction process,have an important role in instability evolution and growth.By employing a simple analytical model and two-dimensional particle-in-cell simulations,we show that the onset of electron heating in the early stage of the acceleration suppresses the growth of small-scale modes,but it has little influence on the growth of large-scale modes,which thus become dominant.With the growth of surface ripples,a mechanism that can significantly influence the growth of these large-scale modes is found.The laser field modulation caused by surface rippling generates an oscillatory ponderomotive force,directly modulating transverse electron density at a faster growth rate than that of ions and eventually enhancing instability growth.Our results show that when surface deformation becomes obvious,electron surface oscillation at 2ω0(whereω0 is the laser frequency)is excited simultaneously,which can be seen as a signature of this mechanism.展开更多
Deformation kinking as an uncommon plastic deformation mechanism has been reported in several materials while the relevant microstructure evolution and grain refinement behavior at a large strain remain unclear so far...Deformation kinking as an uncommon plastic deformation mechanism has been reported in several materials while the relevant microstructure evolution and grain refinement behavior at a large strain remain unclear so far.In this study,the issue was systematically investigated by utilizing cold forging to impose severe plastic deformation(SPD)on Ti-11 V metastableβ-Ti alloys.It is found that the formation of kink bands experiences dislocation gliding,pre-kinking and the ripening of pre-kinks in sequences.The kink bands are subsequently thickened through the coalescence of multiple kink bands in a manner of high accommodation.Ordinary dislocation slip is developed as a dominant deformation mechanism when deformation kinking is exhausted.The resulting grain refinement involves transverse breakdown and longitudinal splitting of dislocation walls and cells,which fragment kink bands into smallβ-blocks.Further refinement of theβ-blocks is still governed by dislocation activities,and finally nanograins with a diameter of~15 nm are produced at a large strain of 1.2.Alternatively,it is revealed that nanocrystallization is highly localized inside kink bands while the outer microstructure maintains original coarse structures.Such localized refinement characterization is ascribed to the intrinsic soft nature of kink bands,shown as low hardness in nanoindentation testing.The intrinsic softening of kink bands is uncovered to originate from the inner degraded dislocation density evidenced by both experimental measurement and theoretical calculation.These findings enrich fundamental understanding of deformation kinking,and shed some light on exploring the deformation accommodation mechanisms for metal materials at large strains.展开更多
In this paper,from the oxygen diffusion point of view we study the effect of thepolyvinyl chloride (PVC) blood bags plasticized by several different plasticizers onthe function of platelets stored in them.Measured b...In this paper,from the oxygen diffusion point of view we study the effect of thepolyvinyl chloride (PVC) blood bags plasticized by several different plasticizers onthe function of platelets stored in them.Measured by Archer’s modifieative method,the diffusion oxygen capacities are 4,17 (PVG-DNUP,diffusion area 92cm<sup>2</sup>,as be-low),3.51 (PVC-AEHTC),2.78 (PVC-DEHP) and 2.01 (PVC-TEHTM) μmoleO<sub>2</sub>/hr.With coplasticized bags,we find that their diffusion oxygen capacities are e-展开更多
基金supported by the National Natural Science Foundation of China(11102122)
文摘Using a stiffness matrix method, we in- vestigate the propagation behaviors of elastic waves in one-dimensional (1D) piezoelectric/piezomagnetic (PE/PM) phononic crystals (PCs) with line defects by calculating energy reflection/transmittion coefficients of quasi-pressure and quasi-shear waves. Line defects are created by the re- placement of PE or PM constituent layer. The defect modes existing in the first gap are considered and the influences on defect modes of the material properties and volume fraction of the defect layers, the type of incident waves, the location of defect layer and the number of structural layers are discussed in detail. Numerical results indicate that defect modes are the most obvious when the defect layers are inserted in the middle of the perfect PCs; the types of incidence wave and material properties of the defect layers have important effects on the numbers, the location of frequencies and the peaks of defect modes, and the defect modes are strongly de- pendent on volume fraction of the defect layers. We hope this paper will be found useful for the design of PE/PM acoustic filters or acoustic transducer with PCs structures.
基金Supported in part by the Ministry of Science and Technology of Chinathe U.S.Department of Energy,the Chinese Academy of Sciences,the CAS Center for Excellence in Particle Physics,the National Natural Science Foundation of China+3 种基金the Guangdong provincial governmentthe Shenzhen municipal government,the China General Nuclear Power Group,the Research Grants Council of the Hong Kong Special Administrative Region of China,the Ministry of Education in TWthe U.S.National Science Foundation,the Ministry of Education,Youth,and Sports of the Czech Republic,the Charles University Research Centre UNCE,the Joint Institute of Nuclear Research in Dubna,Russiathe National Commission of Scientific and Technological Research of Chile。
文摘The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11921006)the Beijing Outstanding Young Scientists Program,and the National Grand Instrument Project(No.2019YFF01014400)The simulations are supported by the High-Performance Computing Platform of Peking University.
文摘The acceleration of ultrathin targets driven by intense laser pulses induces Rayleigh–Taylor-like instability.Apart from laser and target con-figurations,we find that electron heating and surface rippling,effects inherent to the interaction process,have an important role in instability evolution and growth.By employing a simple analytical model and two-dimensional particle-in-cell simulations,we show that the onset of electron heating in the early stage of the acceleration suppresses the growth of small-scale modes,but it has little influence on the growth of large-scale modes,which thus become dominant.With the growth of surface ripples,a mechanism that can significantly influence the growth of these large-scale modes is found.The laser field modulation caused by surface rippling generates an oscillatory ponderomotive force,directly modulating transverse electron density at a faster growth rate than that of ions and eventually enhancing instability growth.Our results show that when surface deformation becomes obvious,electron surface oscillation at 2ω0(whereω0 is the laser frequency)is excited simultaneously,which can be seen as a signature of this mechanism.
基金supported by the National Natural Science Foundation of China(Nos.51871176,51722104,51922017,51972009)the National Key Research and Development Program of China(Nos.2017YFA0700701,2017YFB0702301)+2 种基金the 111 Project 2.0 of China(No.PB2018008)Natural Science Basic Research Plan in Shaanxi Province of China(No.2018JM5098)the Fundamental Research Funds for the Central Universities(No.xtr022019004)。
文摘Deformation kinking as an uncommon plastic deformation mechanism has been reported in several materials while the relevant microstructure evolution and grain refinement behavior at a large strain remain unclear so far.In this study,the issue was systematically investigated by utilizing cold forging to impose severe plastic deformation(SPD)on Ti-11 V metastableβ-Ti alloys.It is found that the formation of kink bands experiences dislocation gliding,pre-kinking and the ripening of pre-kinks in sequences.The kink bands are subsequently thickened through the coalescence of multiple kink bands in a manner of high accommodation.Ordinary dislocation slip is developed as a dominant deformation mechanism when deformation kinking is exhausted.The resulting grain refinement involves transverse breakdown and longitudinal splitting of dislocation walls and cells,which fragment kink bands into smallβ-blocks.Further refinement of theβ-blocks is still governed by dislocation activities,and finally nanograins with a diameter of~15 nm are produced at a large strain of 1.2.Alternatively,it is revealed that nanocrystallization is highly localized inside kink bands while the outer microstructure maintains original coarse structures.Such localized refinement characterization is ascribed to the intrinsic soft nature of kink bands,shown as low hardness in nanoindentation testing.The intrinsic softening of kink bands is uncovered to originate from the inner degraded dislocation density evidenced by both experimental measurement and theoretical calculation.These findings enrich fundamental understanding of deformation kinking,and shed some light on exploring the deformation accommodation mechanisms for metal materials at large strains.
文摘In this paper,from the oxygen diffusion point of view we study the effect of thepolyvinyl chloride (PVC) blood bags plasticized by several different plasticizers onthe function of platelets stored in them.Measured by Archer’s modifieative method,the diffusion oxygen capacities are 4,17 (PVG-DNUP,diffusion area 92cm<sup>2</sup>,as be-low),3.51 (PVC-AEHTC),2.78 (PVC-DEHP) and 2.01 (PVC-TEHTM) μmoleO<sub>2</sub>/hr.With coplasticized bags,we find that their diffusion oxygen capacities are e-