Using nitrate precursors, a novel spray-drying assisted citrate gel process for the preparation of neodymium-doped yttrium alumi- num garnet (YAG) phase was developed. Synthesis of single-phase polycrystalline YAG w...Using nitrate precursors, a novel spray-drying assisted citrate gel process for the preparation of neodymium-doped yttrium alumi- num garnet (YAG) phase was developed. Synthesis of single-phase polycrystalline YAG was achieved at temperatures as low as 800 ℃ using the spray-drying methodology whilst conventional approaches currently available require 1000 ℃. Initially, a solution was prepared by mixing aluminum and yttrium nitrates, citric acid, etilenglycol and neodymium oxide. This solution was dried by pulverization (spray dryer) to obtain aggregated precursor powders of the compound. These aggregates were calcined at 800, 850 and 900 ℃ to determine the phase evolution from amorphous to crystalline by X-ray diffraction (XRD). The morphology of aggregates was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, through XRD it was determined that the crystallization of YAG phase started at about 800 ℃ without any intermediate phases. The powders were composed of spherical aggregates with an average diameter of 1 um. From these powders, ceramic fibers with additions of 2at.% and 5at.% Nd, were extracted from the melt with diameters ranging from 30 um to 50 um.展开更多
基金Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) (1.24.-2005-2007)
文摘Using nitrate precursors, a novel spray-drying assisted citrate gel process for the preparation of neodymium-doped yttrium alumi- num garnet (YAG) phase was developed. Synthesis of single-phase polycrystalline YAG was achieved at temperatures as low as 800 ℃ using the spray-drying methodology whilst conventional approaches currently available require 1000 ℃. Initially, a solution was prepared by mixing aluminum and yttrium nitrates, citric acid, etilenglycol and neodymium oxide. This solution was dried by pulverization (spray dryer) to obtain aggregated precursor powders of the compound. These aggregates were calcined at 800, 850 and 900 ℃ to determine the phase evolution from amorphous to crystalline by X-ray diffraction (XRD). The morphology of aggregates was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, through XRD it was determined that the crystallization of YAG phase started at about 800 ℃ without any intermediate phases. The powders were composed of spherical aggregates with an average diameter of 1 um. From these powders, ceramic fibers with additions of 2at.% and 5at.% Nd, were extracted from the melt with diameters ranging from 30 um to 50 um.