The study on the solvent extraction for quantitative and selective separation of total rare earth metals from the polymetallic nodule leach liquor was investigated. The typical leach liquor bearing 0. 094 g/L total ra...The study on the solvent extraction for quantitative and selective separation of total rare earth metals from the polymetallic nodule leach liquor was investigated. The typical leach liquor bearing 0. 094 g/L total rare earth, 0. 23 g/L Mn, 0.697 g/L Cu, 0.2 g/L Fe, 0.01 g/L Co and 0.735 g/L Ni was subjected to the removal iron content by precipitation method using Ca(OH)2 at pH 3.95, prior to solvent extraction of rare earth metals. Three different organo-phosphoric acid reagents(D2EHPA, PC88 A, Cyanex 272) were used to ascertain their performances and selectivity towards the loading of rare earth metals in presence of other base metals. Based on the results of eq. pH effect, the performances of above three extractants followed the order as: D2EHPA〉PC88A〉Cyanex 272. To ensure the absence of extraction of base metals(Cu, Co, Ni), the eq. pH of the solution was optimized at the level of 2.21, though higher rare earth metal extraction efficiency was observed at higher eq. pH with either of the extractants. The complete process flow diagram for substantial recovery of total rare earth was developed using D2 EHPA. Extraction isotherm plot was constructed at A:O=12:1, 3-stages and pHe=2.21, using 0.8 mol/L D2 EHPA and the predicted condition of this study was further confirmed by 6-Cycles Counter Current Simulation(CCS) study. The stripping of total rare earth from loaded organic phase(LO) was conducted using HCl solution. Mc-Cabe Thiele diagram study carried out at A:O=1:5 using 4 mol/L HCl showed that three theoretical stages were needed for quantitative stripping of total rare earth. The subsequent stripped solution resulted thus led to contain total rare earth of 5.6 g/L indicating a very high enrichment of total metals by solvent extraction(SX) process.展开更多
The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusio...The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusion reactor. Because one of the KSTAR mission is toachieve a steady-state operation, the use of superconducting coils is an obvious choice for themagnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into usein both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasmacenter and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement inKSTAR magnet-system development includes the development of CICC, the development of a full-size TFmodel coil, the development of a coil system for background magnetic-field generation , theconstruction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are inthe stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.展开更多
<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and ...<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.展开更多
Data sets were collected with the BESⅢ detector at the BEPCⅡ collider at the center-of-mass energy of √s=3.650 GeV during May 2009 and at √s=3.773 GeV from January 2010 to May 2011. By analyzing the large angle Bh...Data sets were collected with the BESⅢ detector at the BEPCⅡ collider at the center-of-mass energy of √s=3.650 GeV during May 2009 and at √s=3.773 GeV from January 2010 to May 2011. By analyzing the large angle Bhabha scattering events, the integrated luminosities of the two data sets are measured to be (44.49±0.02±0.44) pb-1 and (2916.94±0.18±29.17) pb-1, respectively, where the first error is statistical and the second error is systematic.展开更多
Compressive sensing is a powerful method for reconstruction of sparsely-sampled data, based on statistical optimization. It can be applied to a range of flow measurement and visualization data, and in this work we sho...Compressive sensing is a powerful method for reconstruction of sparsely-sampled data, based on statistical optimization. It can be applied to a range of flow measurement and visualization data, and in this work we show the usage in groundwater mapping. Due to scarcity of water in many regions of the world, including southwestern United States, monitoring and management of groundwater is of utmost importance. A complete mapping of groundwater is difficult since the monitored sites are far from one another, and thus the data sets are considered extremely “sparse”. To overcome this difficulty in complete mapping of groundwater, compressive sensing is an ideal tool, as it bypasses the classical Nyquist criterion. We show that compressive sensing can effectively be used for reconstructions of groundwater level maps, by validating against data. This approach can have an impact on geographical sensing and information, as effective monitoring and management are enabled without constructing numerous or expensive measurement sites for groundwater.展开更多
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight a...A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near(560 m and 600 m flux-weighted baselines) and one far(1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay(IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020(0.992±0.021) for the Huber+Mueller(ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4–6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ...The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.展开更多
Purpose To complement and ensure redundancy in the endcap muon system of the Compact Muon Solenoid(CMS)detector and to extend the Resistive Plate Chamber(RPC)system coverage,improved RPCs(iRPCs)with either orthogonal ...Purpose To complement and ensure redundancy in the endcap muon system of the Compact Muon Solenoid(CMS)detector and to extend the Resistive Plate Chamber(RPC)system coverage,improved RPCs(iRPCs)with either orthogonal layer strips with one-end electronics or single layer strips with two-end electronics providing more precise time measurement will be installed in the very forward pseudorapidity region of|η|<2.4.The iRPC readout system needs to support twodimensional(2D)or two-end readout.In addition,it must combine detector data with Timing,Trigger and fast Control(TTC)and Slow Control(SC)into one data stream over a bi-directional optical link with a line rate of 4.8 Gb/s between the Front-End Electronics(FEE)and the Back-End Electronics(BEE).To fulfill these requirements,a prototype BEE for the iRPC 2D chamber has been researched and designed.Methods A Micro-Telecommunication and Computing Architecture(μTCA)-based processing card was designed in this study to establish a prototype system together with aμTCA crate.The Giga-Bit Transceiver(GBT)protocol is integrated to provide bi-directional communication between the FEE and BEE.A server is connected with the BEE by a Gigabit Ethernet(GbE)link for SC and a 10-GbE link for Data AcQuisition(DAQ).Results The Bit Error Rate(BER)test of the back-end board and a joint test with the iRPC 2D prototype chamber were performed.ABERof less than 1.331×10−16 was obtained.The timemeasurement with a resolution of 3.05 nswas successfully realized,and detector efficiencies of 97.7%for longitudinal strips and 96.0%for orthogonal strips were measured.Test results demonstrate the correctness and reliability of the prototype BEE.Conclusion The BEE prototype satisfies the requirements for the iRPC 2D chamber,and it worked stably and reliably during a long-term joint test run.展开更多
We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-depe...We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by using various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
基金Project supported by Ministry of Oceans and Fisheries,Korea
文摘The study on the solvent extraction for quantitative and selective separation of total rare earth metals from the polymetallic nodule leach liquor was investigated. The typical leach liquor bearing 0. 094 g/L total rare earth, 0. 23 g/L Mn, 0.697 g/L Cu, 0.2 g/L Fe, 0.01 g/L Co and 0.735 g/L Ni was subjected to the removal iron content by precipitation method using Ca(OH)2 at pH 3.95, prior to solvent extraction of rare earth metals. Three different organo-phosphoric acid reagents(D2EHPA, PC88 A, Cyanex 272) were used to ascertain their performances and selectivity towards the loading of rare earth metals in presence of other base metals. Based on the results of eq. pH effect, the performances of above three extractants followed the order as: D2EHPA〉PC88A〉Cyanex 272. To ensure the absence of extraction of base metals(Cu, Co, Ni), the eq. pH of the solution was optimized at the level of 2.21, though higher rare earth metal extraction efficiency was observed at higher eq. pH with either of the extractants. The complete process flow diagram for substantial recovery of total rare earth was developed using D2 EHPA. Extraction isotherm plot was constructed at A:O=12:1, 3-stages and pHe=2.21, using 0.8 mol/L D2 EHPA and the predicted condition of this study was further confirmed by 6-Cycles Counter Current Simulation(CCS) study. The stripping of total rare earth from loaded organic phase(LO) was conducted using HCl solution. Mc-Cabe Thiele diagram study carried out at A:O=1:5 using 4 mol/L HCl showed that three theoretical stages were needed for quantitative stripping of total rare earth. The subsequent stripped solution resulted thus led to contain total rare earth of 5.6 g/L indicating a very high enrichment of total metals by solvent extraction(SX) process.
基金The project supported by the Korea Ministry of Science and Technology under the KSTAR Project
文摘The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusion reactor. Because one of the KSTAR mission is toachieve a steady-state operation, the use of superconducting coils is an obvious choice for themagnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into usein both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasmacenter and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement inKSTAR magnet-system development includes the development of CICC, the development of a full-size TFmodel coil, the development of a coil system for background magnetic-field generation , theconstruction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are inthe stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.
文摘<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.
基金Supported by the Ministry of Science and Technology of China(2009CB825204)National Natural Science Foundation of China(10625524,10821063,10825524,10835001,10935007,11125525,11235011)+7 种基金Joint Funds of the National Natural Science Foundation of China(11079008,11179007)Chinese Academy of Sciences Large-Scale Scientific Facility Program,CAS(KJCX2-YW-N29,KJCX2-YW-N45)100 Talents Program of CAS,German Research Foundation DFG(Collaborative Research Center CRC-1044)Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)U.S.Department of Energy(DE-FG02-04ER41291,DE-FG02-05ER41374,DE-FG02-94ER40823)U.S.National Science Foundation,University of Groningen(RuG)the Helmholtzzentrum fuer Schwerionenforschung GmbH(GSI)Darmstadt,WCU Program of National Research Foundation of Korea(R32-2008-000-10155-0)
文摘Data sets were collected with the BESⅢ detector at the BEPCⅡ collider at the center-of-mass energy of √s=3.650 GeV during May 2009 and at √s=3.773 GeV from January 2010 to May 2011. By analyzing the large angle Bhabha scattering events, the integrated luminosities of the two data sets are measured to be (44.49±0.02±0.44) pb-1 and (2916.94±0.18±29.17) pb-1, respectively, where the first error is statistical and the second error is systematic.
文摘Compressive sensing is a powerful method for reconstruction of sparsely-sampled data, based on statistical optimization. It can be applied to a range of flow measurement and visualization data, and in this work we show the usage in groundwater mapping. Due to scarcity of water in many regions of the world, including southwestern United States, monitoring and management of groundwater is of utmost importance. A complete mapping of groundwater is difficult since the monitored sites are far from one another, and thus the data sets are considered extremely “sparse”. To overcome this difficulty in complete mapping of groundwater, compressive sensing is an ideal tool, as it bypasses the classical Nyquist criterion. We show that compressive sensing can effectively be used for reconstructions of groundwater level maps, by validating against data. This approach can have an impact on geographical sensing and information, as effective monitoring and management are enabled without constructing numerous or expensive measurement sites for groundwater.
基金Supported in part by the Ministry of Science and Technology of Chinathe United States Department of Energy,the Chinese Academy of Sciences+11 种基金the CAS Center for Excellence in Particle Physicsthe National Natural Science Foundation of Chinathe Guangdong provincial governmentthe Shenzhen municipal governmentthe China General Nuclear Power Groupthe Research Grants Council of the Hong Kong Special Administrative Region of Chinathe MOST and MOE in Taiwanthe U.S.National Science Foundationthe Ministry of Education,Youth and Sports of the Czech Republicthe Joint Institute of Nuclear Research in Dubna,Russiathe NSFC-RFBR joint research programthe National Commission for Scientific and Technological Research of Chile
文摘A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near(560 m and 600 m flux-weighted baselines) and one far(1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay(IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020(0.992±0.021) for the Huber+Mueller(ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4–6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.
基金Supported in part by the Ministry of Science and Technology of Chinathe U.S.Department of Energy,the Chinese Academy of Sciences,the CAS Center for Excellence in Particle Physics,the National Natural Science Foundation of China+3 种基金the Guangdong provincial governmentthe Shenzhen municipal government,the China General Nuclear Power Group,the Research Grants Council of the Hong Kong Special Administrative Region of China,the Ministry of Education in TWthe U.S.National Science Foundation,the Ministry of Education,Youth,and Sports of the Czech Republic,the Charles University Research Centre UNCE,the Joint Institute of Nuclear Research in Dubna,Russiathe National Commission of Scientific and Technological Research of Chile。
文摘The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.
基金the National Key Programme for S&T Research and Development(Grant NO.:2016YFA0400104)the National Natural Science Foundation of China(No.12035018)the IHEP Innovation Fund(Y9545150U2).
文摘Purpose To complement and ensure redundancy in the endcap muon system of the Compact Muon Solenoid(CMS)detector and to extend the Resistive Plate Chamber(RPC)system coverage,improved RPCs(iRPCs)with either orthogonal layer strips with one-end electronics or single layer strips with two-end electronics providing more precise time measurement will be installed in the very forward pseudorapidity region of|η|<2.4.The iRPC readout system needs to support twodimensional(2D)or two-end readout.In addition,it must combine detector data with Timing,Trigger and fast Control(TTC)and Slow Control(SC)into one data stream over a bi-directional optical link with a line rate of 4.8 Gb/s between the Front-End Electronics(FEE)and the Back-End Electronics(BEE).To fulfill these requirements,a prototype BEE for the iRPC 2D chamber has been researched and designed.Methods A Micro-Telecommunication and Computing Architecture(μTCA)-based processing card was designed in this study to establish a prototype system together with aμTCA crate.The Giga-Bit Transceiver(GBT)protocol is integrated to provide bi-directional communication between the FEE and BEE.A server is connected with the BEE by a Gigabit Ethernet(GbE)link for SC and a 10-GbE link for Data AcQuisition(DAQ).Results The Bit Error Rate(BER)test of the back-end board and a joint test with the iRPC 2D prototype chamber were performed.ABERof less than 1.331×10−16 was obtained.The timemeasurement with a resolution of 3.05 nswas successfully realized,and detector efficiencies of 97.7%for longitudinal strips and 96.0%for orthogonal strips were measured.Test results demonstrate the correctness and reliability of the prototype BEE.Conclusion The BEE prototype satisfies the requirements for the iRPC 2D chamber,and it worked stably and reliably during a long-term joint test run.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science and Technology,Korean (Grant Nos. 2012-0000479 and 2011-0009273)the Korea Healthcare Technology R & D Project,Ministry of Health & Welfare,Republic of Korea (Grant No. A100054)
文摘We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by using various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.