The resonant magnetic perturbation(RMP)system is a powerful auxiliary system on tokamaks.On the J-TEXT tokamak,a set of new in-vessel coils is designed to enhance the amplitude of the RMP.The new coils are designed to...The resonant magnetic perturbation(RMP)system is a powerful auxiliary system on tokamaks.On the J-TEXT tokamak,a set of new in-vessel coils is designed to enhance the amplitude of the RMP.The new coils are designed to be two-turn saddle coils.These two-turn saddle coils have been optimized in terms of their structure,support,and protection components to overcome the limitations of the narrow in-vessel space,resulting in a compact coil module that can be accommodated in the vessel.To verify the feasibility of this design,an electromagnetic simulation is performed to investigate the electrical parameters and the generated field of the coils.A multi-field coupled simulation is performed to investigate the capacity of heat dissipation.As a result of these efforts,the new RMP coils have been successfully installed on the J-TEXT tokamak.It has significantly enhanced the RMP amplitude and been widely applied in experiments.展开更多
As the basic of a deeper investigation on the turbulent transport, the fluctuation property in the boundary of the newly-reconstructed Joint Texas Experimental Tokamak (J- TEXT) is studied experimentally using the r...As the basic of a deeper investigation on the turbulent transport, the fluctuation property in the boundary of the newly-reconstructed Joint Texas Experimental Tokamak (J- TEXT) is studied experimentally using the reciprocating Langmuir four-tip probe, which has been built and operated as the primary diagnostic tool in the boundary of J-TEXT tokamak. In this paper, spatial profiles of the plasma-edge parameters are obtained, such as electron temperature, plasma density, plasma potential, poloidal electric field and their fluctuations. The results indicate the existence of a Er ×BT shear layer at the vicinity of last closed flux surface (LCFS), with the fluctuations suppressed in varying degrees. The turbulence-induced particle and energy fluxes can be calculated by the local plasma parameters above. Convection dominates the cross-field turbulent transport in boundary plasma. Electrostatic fluctuations properties are also studied in detail with the help of numerical analysis. Statistical analysis on density fluctuation shows that, the intermittency can affect the turbulence in the scrape-off layer (SOL).展开更多
The effect of resonant magnetic perturbation(RMP) on boundary turbulence and transport in J-TEXT plasma is experimentally investigated.Edge plasma fluctuations in discharges with and without the(m/n=3/1) RMP currents ...The effect of resonant magnetic perturbation(RMP) on boundary turbulence and transport in J-TEXT plasma is experimentally investigated.Edge plasma fluctuations in discharges with and without the(m/n=3/1) RMP currents are diagnosed by using Langmuir probe arrays.It was found that fluctuations in the edge and scrape-off layer(SOL) regions decrease with the application of a 6 kA RMP.The broadband turbulence at the radial location of ρ~0.9 which has a characteristic frequency of 40-150 kHz was strongly suppressed when applying RMP,as was the radial turbulent particle flux and blob transport in the near-SOL region.These experimental findings make RMP a promising method of suppressing and controlling turbulence and particle transport in a plasma boundary.展开更多
A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system(POLARIS)on J-TEXT. Compared with the Abel inversio...A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system(POLARIS)on J-TEXT. Compared with the Abel inversion method, evolution of the density profile analyzed by this method can quickly offer important information. This method has the advantage of fast calculation speed with the order of ten milliseconds per normal shot and it is capable of processing up to 1 MHz sampled data, which is helpful for studying density sawtooth instability and the disruption between shots. In the duration of a flat-top plasma current of usual ohmic discharges on J-TEXT, shape factor u is ranged from 4 to 5. When the disruption of discharge happens, the density profile becomes peaked and the shape factor u typically decreases to 1.展开更多
The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD stud...The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.展开更多
An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and pr...An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature.展开更多
Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of hig...Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of highly localized power deposition.Complete suppression of the m/n=2/1 tearing mode(TM)by electron cyclotron resonance heating(ECRH)has been achieved successfully on the J-TEXT tokamak.The effects of ECW deposition location and power amplitude on the 2/1 TM suppression have been investigated.It is found that the suppression is more effective when the ECW power is deposited closer to the rational surface.As the ECW power increases to approximately 230 k W,the 2/1 TM can be completely suppressed.The island rotation frequency is increased when the island width is reduced.The experimental results show that the local heating inside the magnetic island and the resulting temperature perturbation increase at the O-point of the island play dominant roles in TM suppression.As the ECW power increases,the 2/1 island is suppressed to smaller island width,and the flow shear also plays a stabilizing effect on small magnetic islands.With the stabilizing contribution of heating and flow shear,the 2/1 TM can be completely suppressed.展开更多
Accurate measurement of the average plasma parameters in the edge region,including the temperature and density of electrons and ions,is critical for understanding the characteristics of the scrape-off layer(SOL) and d...Accurate measurement of the average plasma parameters in the edge region,including the temperature and density of electrons and ions,is critical for understanding the characteristics of the scrape-off layer(SOL) and divertor plasma transport in magnetically confined fusion research.On the J-TEXT tokamak,a multi-channel retarding field analyzer(RFA) probe has been developed to study average plasma parameters in the edge region under various poloidal divertor and island divertor configurations.The edge radial profile of the ion-to-electron temperature ratio,τ_(i/e),has been determined,which gradually decreases as the SOL ion self-collisionality,v_(SOL)*,increases.This is broadly consistent with what has been observed previously from various tokamak experiments.However,the comparison of experimental results under different configurations shows that in the poloidal divertor configuration,even under the same v_(SOL)*,τ_(i/e) in the SOL region becomes smaller as the distance from the X-point to the target plate increases.In the island divertor configuration,τ_(i/e) near the O-point is higher than that near the X-point at the same v_(SOL)*,and both are higher than those in the limiter configuration.These results suggest that the magnetic configuration plays a critical role in the energy distributions between electrons and ions at the plasma boundary.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
The identification of magnetohydrodynamic(MHD)modes is a crucial issue in the control of magnetically confined plasmas.This paper proposes a novel method for identifying the evolution of MHD modes from a signal with a...The identification of magnetohydrodynamic(MHD)modes is a crucial issue in the control of magnetically confined plasmas.This paper proposes a novel method for identifying the evolution of MHD modes from a signal with a low signal-to-noise ratio.The proposed method generates a weighted directed graph from the time-frequency spectrum and calculates the evolution of the mode frequency by solving the shortest path.This method addresses the limitations posed by the lack of data channels and the disturbance of noise in the estimation of mode frequency and yields much better results compared to traditional methods.It is demonstrated that,using this method,the evolution of an unlocked tearing mode was more accurately calculated on the J-TEXT tokamak.This method remains feasible even with a low signal-to-noise ratio of 0.5,as shown by its uncertainty.Furthermore,with appropriate parameters,this method can be applied to not only signals with MHD modes,but also to general signals with continuous modes.展开更多
Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,th...Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.展开更多
In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron(RE). Motivated by th...In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron(RE). Motivated by the experiment of multimode coupling to suppress REs on J-TEXT, some typical simulation cases with non-ideal MHD with rotation-open discussion(NIMROD) code are carried out to explore the influential mechanism of different relative phases between m/n =2/1 and m/n = 3/1 magnetic islands on the confinement of REs. Results show that the RE confinement is drastically affected by the relative phase between 2/1 and 3/1 magnetic islands. When the O point phase of 2/1 and 3/1 magnetic islands is toroidal 330°, REs can be effectively lost. The fitting curve of the remaining ratio of REs vs. the relative toroidal phase is predicted to approximate a sine-like function dependence. Further studies indicate that the phase difference between coexisting 2/1 and 3/1 islands can affect the radial transport of impurities. The loss of runaway electrons is closely related to the deposition effect of impurity. The impurity is easier to spread into the core region with smaller poloidal phase difference between the radial velocity of impurity and the impurity quantity of Ar.展开更多
The detailed density perturbations provided by the advanced polarimeter-interferometer system(Polaris) during sawtooth collapse on the Joint Texas Experimental Tokamak(J-TEXT) are reported in this article.During a saw...The detailed density perturbations provided by the advanced polarimeter-interferometer system(Polaris) during sawtooth collapse on the Joint Texas Experimental Tokamak(J-TEXT) are reported in this article.During a sawtooth collapse and the crash of plasma pressure at the center,it is found that the increase in density in the region between the inversion radius and mixing radius is poloidally asymmetrical,while the increase in temperature is poloidally symmetrical.The poloidal location where the density increases is dependent on the phase of the precursory m/n=1/1 kink mode.It is always out of phase with the hot core of the m/n=1/1 mode.The behaviors of density perturbations during sawtooth collapse observed in J-TEXT are beyond the expectations of the standard model,and this can shed new light on the understanding of sawtooth collapse.展开更多
Disruption remains to be a serious threat to large tokamaks like the International Thermonuclear Experimental Reactor(ITER).The injection speed of disruption mitigation systems(DMS)driven by high pressure gas is limit...Disruption remains to be a serious threat to large tokamaks like the International Thermonuclear Experimental Reactor(ITER).The injection speed of disruption mitigation systems(DMS)driven by high pressure gas is limited by the sound speed of the propellant gas.When extrapolating to ITER-like tokamaks,long overall reaction duration and shallow penetration depth due to low injection speed make it stricter for plasma control system to predict the impending disruptions.Some disruptions with a short warning time may be unavoidable.Thus,a fast time response and high injection speed DMS is essential for large scale devices.The electromagnetic pellet-injection(EMPI)system is a novel massive material injection system aiming to provide rapid and effective disruption mitigation.Based on the railgun concept,EMPI can accelerate the payload to over 1000 m/s and shorten the overall reaction time to a few milliseconds.To verify the injection ability and stability of the EMPI,the prototype injector EMPI-1 has been designed and assembled.The preliminary test has been carried out using a 5.9 g armature to propel a dummy pellet and the results suggest that the EMPI configuration has a great potential to be the DMS of the large scale fusion devices.展开更多
The J-TEXT tokamak has been operated for ten years since its first plasma obtained at the end of 2007. The diagnostics development and main modulation systems, i.e. resonant magnetic perturbation (RMP) systems and m...The J-TEXT tokamak has been operated for ten years since its first plasma obtained at the end of 2007. The diagnostics development and main modulation systems, i.e. resonant magnetic perturbation (RMP) systems and massive gas injection (MGI) systems, will be introduced in this paper. Supported by these efforts, J-TEXT has contributed to research on several topics, especially on RMP physics and disruption mitigation. Both experimental and theoretical research show that RMP could lock, suppress or excite the tearing modes, depending on the RMP amplitude, frequency difference between RMP and rational surface rotation, and initial stabilities. The plasma rotation, particle transport and operation region are influenced by the RMP. Utilizing the MGI valves, disruptions have been mitigated with pure He, pure Ne, and a mixture of He and Ar (9:1). A significant runaway current plateau could be generated with moderate amounts of Ar injection. The RMP has been shown to suppress the generation of runaway current during disruptions.展开更多
To extend the operation region of the Joint-Texas Experimental tokamak(J-TEXT) to the divertor configuration and even the H-mode,the divertor configuration discharge has been realized for the first time in the J-TEXT ...To extend the operation region of the Joint-Texas Experimental tokamak(J-TEXT) to the divertor configuration and even the H-mode,the divertor configuration discharge has been realized for the first time in the J-TEXT tokamak.Along with the establishment of a power supply for the divertor configuration,the construction of relevant diagnostics,and the installation of the divertor target on the high-field side,divertor discharge has been tested.Through the equilibrium calculation and position stability analysis,the control strategy has evolved to be more stable.High-density experiments and auxiliary heating experiments have been carried out on the divertor configuration.The special midplane single-null(MSN) divertor configuration is shown to be more stable than the limiter configuration in the density limit condition and can reach a higher density in the experiment.In the ECRH experiment,the power injection enhances the electron temperature and density,while more heat outflux is loaded on the divertor target tiles and causes more intensive recycling and impurity release.The future plan for the divertor configuration operation in the J-TEXT tokamak is also included.展开更多
Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD pow...Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD power threshold reduction.ECCD efficiency has been investigated on the J-TEXT tokamak.The electron cyclotron wave(ECW) power scan was performed to obtain the current drive efficiency.The current drive efficiency is derived to be approximately η_(0)=(0.06-0.16)×10^(19)A m^(-2)W^(-1)on the J-TEXT tokamak.The effect of the residual toroidal electric field has been included in the determination of the current drive efficiency,which will enhance the ECCD efficiency.At the plasma current of I_(p)=100 kA and electron density of n_(e)=1.5×10^(19)m^(-3),the ratio of Spitzer conductivity between omhic(OH)and ECCD phases is considered and the experimental data have been corrected.The correction results show that the current drive efficiency η_(1)caused by the fast electron hot conductivity decreases by approximately 79%.It can be estimated that the driven current is approximately 24 kA at 300 kW ECW power.展开更多
The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 comp...The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 components,can be varied by the phase difference between the upper and lower coil rows,ΔΦ=Φ_(top)-Φ_(bottom),where Φ_(top)and Φ_(bottom)are the toroidal phases of the n=1 field of each coil row.The type of RMP penetration is found to be related to ΔΦ,including the RMP penetration of either 2/1 or 3/1 RMP and the successive penetrations of 3/1 RMP followed by the 2/1 RMP.For cases with penetration of only one RMP component,the penetration thresholds measured by the corresponding resonant component are close for variousΔΦ.However,the 2/1 RMP penetration threshold is significantly reduced if the 3/1 locked island is formed in advance.The changes in the rotation profile due to 3/1 locked island formation could partially contribute to the reduction of the 2/1 thresholds.展开更多
In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy sp...In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy spectrum of the fast electrons have been measured in two ECCD cases with either on-axis or off-axis injection,and the profiles processed by Abel-inversion are consistent with the calculated power deposition locations.Moreover,it is observed that the energy of fast electrons increases rapidly after turning off the ECCD,which may be attributed to the acceleration by the recovered loop voltage at low electron density.展开更多
Developing advanced magnetic divertor configurations to address the coupling of heat and particle exhaust with impurity control is one of the major challenges currently constraining the further development of fusion r...Developing advanced magnetic divertor configurations to address the coupling of heat and particle exhaust with impurity control is one of the major challenges currently constraining the further development of fusion research.It has therefore become the focus of extensive attention in recent years.In J-TEXT,several new divertor configurations,including the high-field-side single-null poloidal divertor and the island divertor,as well as their associated fundamental edge divertor plasma physics,have recently been investigated.The purpose of this paper is to briefly summarize the latest progress and achievements in this relevant research field on J-TEXT from the past few years.展开更多
基金supported by Hubei Provincial Natural Science Foundation of China(No.BZQ22006)Fundamental Research Funds for the Central Universities(No.CZY20028)+1 种基金National Magnetic Confinement Fusion Energy R&D Program of China(No.2018YFE0309102)National Natural Science Foundation of China(No.51821005)。
文摘The resonant magnetic perturbation(RMP)system is a powerful auxiliary system on tokamaks.On the J-TEXT tokamak,a set of new in-vessel coils is designed to enhance the amplitude of the RMP.The new coils are designed to be two-turn saddle coils.These two-turn saddle coils have been optimized in terms of their structure,support,and protection components to overcome the limitations of the narrow in-vessel space,resulting in a compact coil module that can be accommodated in the vessel.To verify the feasibility of this design,an electromagnetic simulation is performed to investigate the electrical parameters and the generated field of the coils.A multi-field coupled simulation is performed to investigate the capacity of heat dissipation.As a result of these efforts,the new RMP coils have been successfully installed on the J-TEXT tokamak.It has significantly enhanced the RMP amplitude and been widely applied in experiments.
基金supported by Open Research Program from Key Laboratory of Geospace Environment, Chinese Academy of Sciences
文摘As the basic of a deeper investigation on the turbulent transport, the fluctuation property in the boundary of the newly-reconstructed Joint Texas Experimental Tokamak (J- TEXT) is studied experimentally using the reciprocating Langmuir four-tip probe, which has been built and operated as the primary diagnostic tool in the boundary of J-TEXT tokamak. In this paper, spatial profiles of the plasma-edge parameters are obtained, such as electron temperature, plasma density, plasma potential, poloidal electric field and their fluctuations. The results indicate the existence of a Er ×BT shear layer at the vicinity of last closed flux surface (LCFS), with the fluctuations suppressed in varying degrees. The turbulence-induced particle and energy fluxes can be calculated by the local plasma parameters above. Convection dominates the cross-field turbulent transport in boundary plasma. Electrostatic fluctuations properties are also studied in detail with the help of numerical analysis. Statistical analysis on density fluctuation shows that, the intermittency can affect the turbulence in the scrape-off layer (SOL).
基金supported by the National Key Research & Development Programme of China (No. 2018YFE0309100, 2017YFE0301201)National Natural Science Foundation of China (Nos. 11875124, U1867222, 11575055, 11705052 & 11705151)the National Magnetic Confinement Fusion Science Programme of China (Nos. 2015GB120002, 2015GB11101 & 2015GB104000)
文摘The effect of resonant magnetic perturbation(RMP) on boundary turbulence and transport in J-TEXT plasma is experimentally investigated.Edge plasma fluctuations in discharges with and without the(m/n=3/1) RMP currents are diagnosed by using Langmuir probe arrays.It was found that fluctuations in the edge and scrape-off layer(SOL) regions decrease with the application of a 6 kA RMP.The broadband turbulence at the radial location of ρ~0.9 which has a characteristic frequency of 40-150 kHz was strongly suppressed when applying RMP,as was the radial turbulent particle flux and blob transport in the near-SOL region.These experimental findings make RMP a promising method of suppressing and controlling turbulence and particle transport in a plasma boundary.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB106000,2014GB106002,and2014GB106003)National Natural Science Foundation of China(Nos.11275234,11375237 and 11505238)Scientific Research Grant of Hefei Science Center of CAS(No.2015SRG-HSC010)
文摘A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system(POLARIS)on J-TEXT. Compared with the Abel inversion method, evolution of the density profile analyzed by this method can quickly offer important information. This method has the advantage of fast calculation speed with the order of ten milliseconds per normal shot and it is capable of processing up to 1 MHz sampled data, which is helpful for studying density sawtooth instability and the disruption between shots. In the duration of a flat-top plasma current of usual ohmic discharges on J-TEXT, shape factor u is ranged from 4 to 5. When the disruption of discharge happens, the density profile becomes peaked and the shape factor u typically decreases to 1.
基金supported by the International Thermonuclear Experimental Reactor Special Fund of China (Grant Nos. 2013GB106001 and 2013GB106003)
文摘The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.
基金Project supported by the National Natural Science Foundation of China (Grant No.51821005)。
文摘An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2019YFE03010004)the Hubei Provincial Natural Science Foundation of China(No.2022CFA072)National Natural Science Foundation of China(No.51821005)。
文摘Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of highly localized power deposition.Complete suppression of the m/n=2/1 tearing mode(TM)by electron cyclotron resonance heating(ECRH)has been achieved successfully on the J-TEXT tokamak.The effects of ECW deposition location and power amplitude on the 2/1 TM suppression have been investigated.It is found that the suppression is more effective when the ECW power is deposited closer to the rational surface.As the ECW power increases to approximately 230 k W,the 2/1 TM can be completely suppressed.The island rotation frequency is increased when the island width is reduced.The experimental results show that the local heating inside the magnetic island and the resulting temperature perturbation increase at the O-point of the island play dominant roles in TM suppression.As the ECW power increases,the 2/1 island is suppressed to smaller island width,and the flow shear also plays a stabilizing effect on small magnetic islands.With the stabilizing contribution of heating and flow shear,the 2/1 TM can be completely suppressed.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China (No.2018YFE0309100)National Natural Science Foundation of China (No.51821005)。
文摘Accurate measurement of the average plasma parameters in the edge region,including the temperature and density of electrons and ions,is critical for understanding the characteristics of the scrape-off layer(SOL) and divertor plasma transport in magnetically confined fusion research.On the J-TEXT tokamak,a multi-channel retarding field analyzer(RFA) probe has been developed to study average plasma parameters in the edge region under various poloidal divertor and island divertor configurations.The edge radial profile of the ion-to-electron temperature ratio,τ_(i/e),has been determined,which gradually decreases as the SOL ion self-collisionality,v_(SOL)*,increases.This is broadly consistent with what has been observed previously from various tokamak experiments.However,the comparison of experimental results under different configurations shows that in the poloidal divertor configuration,even under the same v_(SOL)*,τ_(i/e) in the SOL region becomes smaller as the distance from the X-point to the target plate increases.In the island divertor configuration,τ_(i/e) near the O-point is higher than that near the X-point at the same v_(SOL)*,and both are higher than those in the limiter configuration.These results suggest that the magnetic configuration plays a critical role in the energy distributions between electrons and ions at the plasma boundary.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
基金supported by the Hubei Provincial Natural Science Foundation of China(No.BZQ22006)National Natural Science Foundation of China(Nos.51977221 and 51821005)。
文摘The identification of magnetohydrodynamic(MHD)modes is a crucial issue in the control of magnetically confined plasmas.This paper proposes a novel method for identifying the evolution of MHD modes from a signal with a low signal-to-noise ratio.The proposed method generates a weighted directed graph from the time-frequency spectrum and calculates the evolution of the mode frequency by solving the shortest path.This method addresses the limitations posed by the lack of data channels and the disturbance of noise in the estimation of mode frequency and yields much better results compared to traditional methods.It is demonstrated that,using this method,the evolution of an unlocked tearing mode was more accurately calculated on the J-TEXT tokamak.This method remains feasible even with a low signal-to-noise ratio of 0.5,as shown by its uncertainty.Furthermore,with appropriate parameters,this method can be applied to not only signals with MHD modes,but also to general signals with continuous modes.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2018YFE0301104 and 2018YFE0301100)National Natural Science Foundation of China(Nos.12075096 and 51821005)。
文摘Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12175078 and 51821005)
文摘In the experiments of actively triggering plasma disruption by massive gas injection, the externally applied resonant magnetic perturbation has been used to mitigate the hazard of runaway electron(RE). Motivated by the experiment of multimode coupling to suppress REs on J-TEXT, some typical simulation cases with non-ideal MHD with rotation-open discussion(NIMROD) code are carried out to explore the influential mechanism of different relative phases between m/n =2/1 and m/n = 3/1 magnetic islands on the confinement of REs. Results show that the RE confinement is drastically affected by the relative phase between 2/1 and 3/1 magnetic islands. When the O point phase of 2/1 and 3/1 magnetic islands is toroidal 330°, REs can be effectively lost. The fitting curve of the remaining ratio of REs vs. the relative toroidal phase is predicted to approximate a sine-like function dependence. Further studies indicate that the phase difference between coexisting 2/1 and 3/1 islands can affect the radial transport of impurities. The loss of runaway electrons is closely related to the deposition effect of impurity. The impurity is easier to spread into the core region with smaller poloidal phase difference between the radial velocity of impurity and the impurity quantity of Ar.
基金supported by the National MCF Energy R&D Program of China (No.2018YFE0310300)National Natural Science Foundation of China (No.51821005)。
文摘The detailed density perturbations provided by the advanced polarimeter-interferometer system(Polaris) during sawtooth collapse on the Joint Texas Experimental Tokamak(J-TEXT) are reported in this article.During a sawtooth collapse and the crash of plasma pressure at the center,it is found that the increase in density in the region between the inversion radius and mixing radius is poloidally asymmetrical,while the increase in temperature is poloidally symmetrical.The poloidal location where the density increases is dependent on the phase of the precursory m/n=1/1 kink mode.It is always out of phase with the hot core of the m/n=1/1 mode.The behaviors of density perturbations during sawtooth collapse observed in J-TEXT are beyond the expectations of the standard model,and this can shed new light on the understanding of sawtooth collapse.
基金Project supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2019YFE03010004)the National Natural Science Foundation of China (Grant Nos. 12175078, 11905077, and 51821005)
文摘Disruption remains to be a serious threat to large tokamaks like the International Thermonuclear Experimental Reactor(ITER).The injection speed of disruption mitigation systems(DMS)driven by high pressure gas is limited by the sound speed of the propellant gas.When extrapolating to ITER-like tokamaks,long overall reaction duration and shallow penetration depth due to low injection speed make it stricter for plasma control system to predict the impending disruptions.Some disruptions with a short warning time may be unavoidable.Thus,a fast time response and high injection speed DMS is essential for large scale devices.The electromagnetic pellet-injection(EMPI)system is a novel massive material injection system aiming to provide rapid and effective disruption mitigation.Based on the railgun concept,EMPI can accelerate the payload to over 1000 m/s and shorten the overall reaction time to a few milliseconds.To verify the injection ability and stability of the EMPI,the prototype injector EMPI-1 has been designed and assembled.The preliminary test has been carried out using a 5.9 g armature to propel a dummy pellet and the results suggest that the EMPI configuration has a great potential to be the DMS of the large scale fusion devices.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB118000,2014GB106001,2015GB111001,2015GB111002 and 2015GB120003)National Natural Science Foundation of China(Nos.11505069,11275079 and 11405068)
文摘The J-TEXT tokamak has been operated for ten years since its first plasma obtained at the end of 2007. The diagnostics development and main modulation systems, i.e. resonant magnetic perturbation (RMP) systems and massive gas injection (MGI) systems, will be introduced in this paper. Supported by these efforts, J-TEXT has contributed to research on several topics, especially on RMP physics and disruption mitigation. Both experimental and theoretical research show that RMP could lock, suppress or excite the tearing modes, depending on the RMP amplitude, frequency difference between RMP and rational surface rotation, and initial stabilities. The plasma rotation, particle transport and operation region are influenced by the RMP. Utilizing the MGI valves, disruptions have been mitigated with pure He, pure Ne, and a mixture of He and Ar (9:1). A significant runaway current plateau could be generated with moderate amounts of Ar injection. The RMP has been shown to suppress the generation of runaway current during disruptions.
基金supported by the National MCF Energy R&D Program of China(Nos.2018YFE0301104 and 2018YFE0310300)National Natural Science Foundation of China(No.51821005)
文摘To extend the operation region of the Joint-Texas Experimental tokamak(J-TEXT) to the divertor configuration and even the H-mode,the divertor configuration discharge has been realized for the first time in the J-TEXT tokamak.Along with the establishment of a power supply for the divertor configuration,the construction of relevant diagnostics,and the installation of the divertor target on the high-field side,divertor discharge has been tested.Through the equilibrium calculation and position stability analysis,the control strategy has evolved to be more stable.High-density experiments and auxiliary heating experiments have been carried out on the divertor configuration.The special midplane single-null(MSN) divertor configuration is shown to be more stable than the limiter configuration in the density limit condition and can reach a higher density in the experiment.In the ECRH experiment,the power injection enhances the electron temperature and density,while more heat outflux is loaded on the divertor target tiles and causes more intensive recycling and impurity release.The future plan for the divertor configuration operation in the J-TEXT tokamak is also included.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2019YFE03010004)the National Key R&D Program ofChina(No.2018YFE0309100)National Natural Science Foundation of China(Nos.11775089,11905077,51821005)
文摘Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD power threshold reduction.ECCD efficiency has been investigated on the J-TEXT tokamak.The electron cyclotron wave(ECW) power scan was performed to obtain the current drive efficiency.The current drive efficiency is derived to be approximately η_(0)=(0.06-0.16)×10^(19)A m^(-2)W^(-1)on the J-TEXT tokamak.The effect of the residual toroidal electric field has been included in the determination of the current drive efficiency,which will enhance the ECCD efficiency.At the plasma current of I_(p)=100 kA and electron density of n_(e)=1.5×10^(19)m^(-3),the ratio of Spitzer conductivity between omhic(OH)and ECCD phases is considered and the experimental data have been corrected.The correction results show that the current drive efficiency η_(1)caused by the fast electron hot conductivity decreases by approximately 79%.It can be estimated that the driven current is approximately 24 kA at 300 kW ECW power.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2019YFE03010004,2018YFE0309100)the National Key R&D Program of China(No.2017YFE0301100)National Natural Science Foundation of China(Nos.11905078,12075096 and 51821005)
文摘The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 components,can be varied by the phase difference between the upper and lower coil rows,ΔΦ=Φ_(top)-Φ_(bottom),where Φ_(top)and Φ_(bottom)are the toroidal phases of the n=1 field of each coil row.The type of RMP penetration is found to be related to ΔΦ,including the RMP penetration of either 2/1 or 3/1 RMP and the successive penetrations of 3/1 RMP followed by the 2/1 RMP.For cases with penetration of only one RMP component,the penetration thresholds measured by the corresponding resonant component are close for variousΔΦ.However,the 2/1 RMP penetration threshold is significantly reduced if the 3/1 locked island is formed in advance.The changes in the rotation profile due to 3/1 locked island formation could partially contribute to the reduction of the 2/1 thresholds.
基金the National Key R&D Program of China(Nos.2017YFE0302000,2018YFE0309103,2019YFE030-10004,2017YFE0300501,2018YFE0310300,2018YFE0309100)National Natural Science Foundation of China(Nos.11775089,51821005,11905077 and 11575068)the China Postdoctoral Science Foundation(No.2019M652615)。
文摘In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy spectrum of the fast electrons have been measured in two ECCD cases with either on-axis or off-axis injection,and the profiles processed by Abel-inversion are consistent with the calculated power deposition locations.Moreover,it is observed that the energy of fast electrons increases rapidly after turning off the ECCD,which may be attributed to the acceleration by the recovered loop voltage at low electron density.
基金supported by the National MCF Energy R&D Program of China(Nos.2018YFE0309100 and 2018YFE0310300)the National Key R&D Program of China(No.2017YFE0302000)National Natural Science Foundation of China(No.51821005)
文摘Developing advanced magnetic divertor configurations to address the coupling of heat and particle exhaust with impurity control is one of the major challenges currently constraining the further development of fusion research.It has therefore become the focus of extensive attention in recent years.In J-TEXT,several new divertor configurations,including the high-field-side single-null poloidal divertor and the island divertor,as well as their associated fundamental edge divertor plasma physics,have recently been investigated.The purpose of this paper is to briefly summarize the latest progress and achievements in this relevant research field on J-TEXT from the past few years.