The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed...The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed-time eventtriggered group consensus,are designed.It is demonstrated that there is no Zeno behavior under the designed eventtriggered control.Meanwhile,it is proved that for an arbitrary initial state of the system,group consensus within the settling time could be obtained under the proposed control protocols by using matrix analysis and graph theory.Finally,a series of numerical examples are propounded to illustrate the performance of the proposed control protocol.展开更多
基金Project supported by the Graduate Student Research Innovation Project of Chongqing(Grant No.CYS22482)the National Natural Science Foundation of China(Grant No.61773082)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202000601)the Research Program of Chongqing Talent,China(Grant No.cstc2021ycjhbgzxm0044).
文摘The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed-time eventtriggered group consensus,are designed.It is demonstrated that there is no Zeno behavior under the designed eventtriggered control.Meanwhile,it is proved that for an arbitrary initial state of the system,group consensus within the settling time could be obtained under the proposed control protocols by using matrix analysis and graph theory.Finally,a series of numerical examples are propounded to illustrate the performance of the proposed control protocol.