Selective laser melting(SLM)is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance.Particulate-reinforced aluminum matrix composites(PAMCs)are important m...Selective laser melting(SLM)is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance.Particulate-reinforced aluminum matrix composites(PAMCs)are important materials for various applications due to the combined properties of Al matrix and reinforcements.Considering the advantages of SLM technology and PAMCs,the novel SLM PAMCs have been developed and researched in recent years.Therefore,the current research progress about the SLM PAMCs is reviewed.Firstly,special attention is paid to the solidification behavior of SLM PAMCs.Secondly,the important issues about the design and fabrication of high-performance SLM PAMCs,including the selection of reinforcement,the influence of parameters on the processing and microstructure,the defect evolution and phase control,are highlighted and discussed comprehensively.Thirdly,the performance and strengthening mechanism of SLM PAMCs are systematically figured out.Finally,future directions are pointed out on the advancement of high-performance SLM PAMCs.展开更多
To get a deep understanding of the evolution behavior of equiaxedαphase in Ti−8Al−1Mo−1V alloy during annealing,its static coarsening mechanism was studied based on the calculations of coarsening exponent n and the a...To get a deep understanding of the evolution behavior of equiaxedαphase in Ti−8Al−1Mo−1V alloy during annealing,its static coarsening mechanism was studied based on the calculations of coarsening exponent n and the activation energy forαboundary migration.The result of n=6 indicates a special coarsening mechanism of equiaxedαphase.The activation energy forαboundary migration is calculated to be 138 kJ/mol,which is close to the activation energy for grain growth of pureα-Ti.It is revealed that the coarsening of equiaxedαcan be mainly attributed to the self-diffusion of Ti atoms across theα/αboundaries.Based on the experimental findings,a static coarsening kinetics model of equiaxedαgrains in theα+βfield is established.At last,the effects of the coarsening behavior of equiaxedαon tensile properties were studied.展开更多
基金Project(GJHZ20190822095418365)supported by Shenzhen International Cooperation Research,ChinaProject(2019011)supported by NTUT-SZU Joint Research Program,China+2 种基金Project(2019040)supported by Natural Science Foundation of Shenzhen University,ChinaProject(JCYJ20190808144009478)supported by Shenzhen Fundamental Research Fund,ChinaProject(ZDYBH201900000008)supported by Shenzhen Bureau of Industry and Information Technology,China。
文摘Selective laser melting(SLM)is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance.Particulate-reinforced aluminum matrix composites(PAMCs)are important materials for various applications due to the combined properties of Al matrix and reinforcements.Considering the advantages of SLM technology and PAMCs,the novel SLM PAMCs have been developed and researched in recent years.Therefore,the current research progress about the SLM PAMCs is reviewed.Firstly,special attention is paid to the solidification behavior of SLM PAMCs.Secondly,the important issues about the design and fabrication of high-performance SLM PAMCs,including the selection of reinforcement,the influence of parameters on the processing and microstructure,the defect evolution and phase control,are highlighted and discussed comprehensively.Thirdly,the performance and strengthening mechanism of SLM PAMCs are systematically figured out.Finally,future directions are pointed out on the advancement of high-performance SLM PAMCs.
基金financial supports from the China Scholarship Council(No.201906935013)the National Natural Science Foundation of China(No.51801132).
文摘To get a deep understanding of the evolution behavior of equiaxedαphase in Ti−8Al−1Mo−1V alloy during annealing,its static coarsening mechanism was studied based on the calculations of coarsening exponent n and the activation energy forαboundary migration.The result of n=6 indicates a special coarsening mechanism of equiaxedαphase.The activation energy forαboundary migration is calculated to be 138 kJ/mol,which is close to the activation energy for grain growth of pureα-Ti.It is revealed that the coarsening of equiaxedαcan be mainly attributed to the self-diffusion of Ti atoms across theα/αboundaries.Based on the experimental findings,a static coarsening kinetics model of equiaxedαgrains in theα+βfield is established.At last,the effects of the coarsening behavior of equiaxedαon tensile properties were studied.