This article explains the results of a study conducted on the characterizations of subgrade soils in the region of Thies. The road platforms are mainly composed of a background soil, which is generally overlapped by a...This article explains the results of a study conducted on the characterizations of subgrade soils in the region of Thies. The road platforms are mainly composed of a background soil, which is generally overlapped by a surface layer that plays two roles. Firstly, it protects the soil structure, ensures the leveling, and facilitates the movement of vehicles. Secondly, it brings harmony in the mechanistic characteristics of the materials that compose the soil while improving the long-term life force. The methodology consisted in taking samples of subgrade soil along the roads all over the region of Thies in a 5 km diameter span. The identification tests allowed the Thies-Tivaoune, Thies-Khombole and Thies-Noto axes are characterized by tight sands, poorly graded size. While Thies Pout-axis is characteristic of severe solid particle size and spread well graded and serious to spread and well graded particle size. Finally the Thies-Montrolland axis is characterized by severe to very tight particle size and graduated to spread and serious and well graded particle size. The specific gravity values found Proctor test shows the presence of sand, sandy laterite and laterite. In the target area, polished soils of the A-3 type according to the AASHTO classification system are the most represented with 60%, followed by the A-2-6 type 25%, and the A-2-4 type with 9%, which are typical of gravel, clay, and silty sands. Soils of the A-1-b type (2%) typical of roc fragments, sands and clay are also represented. Polished sands of the A-3 type have a better efficiency on road infrastructures than other types of soil listed above. Finally, we’ve also noted the presence of soils of the A-2-7 and A-4 types with the low percentage of 2%. Subgrade soils of class S4 are the most represented with 58%, followed by those of class S5 with 42%. Samples of the Thies-Montrolland road have a claylike plasticity (CL or CH group), while those of the Thies-Pout road belong to the ML or OL and CL or OL groups with a tendency mostly directed to the 展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">Seismic refraction investigations have been carried out in Bakel, Eastern Senegal. The purpose was to map geometrica...<div style="text-align:justify;"> <span style="font-family:Verdana;">Seismic refraction investigations have been carried out in Bakel, Eastern Senegal. The purpose was to map geometrical relationship between the existing rock types and the Panafrican quarzitic basement, which is valuable information for the project of the Bakel fluviatile port construction. Four seismic refraction profiles were acquired. The obtained data have been processed by inversion. The obtained four seismic P-wave velocity profiles have been integrated to obtain a 3D model. By comparing the outcropping geological formations with the observed seismic data at the surface, it was possible to identify the lithology corresponding to each measured range of seismic velocity for the alluvium, the weathered bed rock, and the fresh rock. The results showed that the depth of the fresh rock of the basement varies from 0 to 18 meters above the sea level, with a deepening toward the Senegal River and toward the Northern part of the studied area. The presence of alluviums and their thickness are linked to the existence of bays and gulfs. The results of this study give valuable information for the river bed dredging cost assessment prior to the port construction phase.</span> </div>展开更多
文摘This article explains the results of a study conducted on the characterizations of subgrade soils in the region of Thies. The road platforms are mainly composed of a background soil, which is generally overlapped by a surface layer that plays two roles. Firstly, it protects the soil structure, ensures the leveling, and facilitates the movement of vehicles. Secondly, it brings harmony in the mechanistic characteristics of the materials that compose the soil while improving the long-term life force. The methodology consisted in taking samples of subgrade soil along the roads all over the region of Thies in a 5 km diameter span. The identification tests allowed the Thies-Tivaoune, Thies-Khombole and Thies-Noto axes are characterized by tight sands, poorly graded size. While Thies Pout-axis is characteristic of severe solid particle size and spread well graded and serious to spread and well graded particle size. Finally the Thies-Montrolland axis is characterized by severe to very tight particle size and graduated to spread and serious and well graded particle size. The specific gravity values found Proctor test shows the presence of sand, sandy laterite and laterite. In the target area, polished soils of the A-3 type according to the AASHTO classification system are the most represented with 60%, followed by the A-2-6 type 25%, and the A-2-4 type with 9%, which are typical of gravel, clay, and silty sands. Soils of the A-1-b type (2%) typical of roc fragments, sands and clay are also represented. Polished sands of the A-3 type have a better efficiency on road infrastructures than other types of soil listed above. Finally, we’ve also noted the presence of soils of the A-2-7 and A-4 types with the low percentage of 2%. Subgrade soils of class S4 are the most represented with 58%, followed by those of class S5 with 42%. Samples of the Thies-Montrolland road have a claylike plasticity (CL or CH group), while those of the Thies-Pout road belong to the ML or OL and CL or OL groups with a tendency mostly directed to the
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">Seismic refraction investigations have been carried out in Bakel, Eastern Senegal. The purpose was to map geometrical relationship between the existing rock types and the Panafrican quarzitic basement, which is valuable information for the project of the Bakel fluviatile port construction. Four seismic refraction profiles were acquired. The obtained data have been processed by inversion. The obtained four seismic P-wave velocity profiles have been integrated to obtain a 3D model. By comparing the outcropping geological formations with the observed seismic data at the surface, it was possible to identify the lithology corresponding to each measured range of seismic velocity for the alluvium, the weathered bed rock, and the fresh rock. The results showed that the depth of the fresh rock of the basement varies from 0 to 18 meters above the sea level, with a deepening toward the Senegal River and toward the Northern part of the studied area. The presence of alluviums and their thickness are linked to the existence of bays and gulfs. The results of this study give valuable information for the river bed dredging cost assessment prior to the port construction phase.</span> </div>