Sparsity adaptive matching pursuit(SAMP)is a greedy reconstruction algorithm for compressive sensing signals.SAMP reconstructs signals without prior information of sparsity and presents better reconstruction performan...Sparsity adaptive matching pursuit(SAMP)is a greedy reconstruction algorithm for compressive sensing signals.SAMP reconstructs signals without prior information of sparsity and presents better reconstruction performance for noisy signals compared to other greedy algorithms.However,SAMP still suffers from relatively poor reconstruction quality especially at high compression ratios.In the proposed research,the Wilkinson matrix is used as a sensing matrix to improve the reconstruction quality and to increase the compression ratio of the SAMP technique.Furthermore,the idea of block compressive sensing(BCS)is combined with the SAMP technique to improve the performance of the SAMP technique.Numerous simulations have been conducted to evaluate the proposed BCS-SAMP technique and to compare its results with those of several compressed sensing techniques.Simulation results show that the proposed BCS-SAMP technique improves the reconstruction quality by up to six decibels(d B)relative to the conventional SAMP technique.In addition,the reconstruction quality of the proposed BCS-SAMP is highly comparable to that of iterative techniques.Moreover,the computation time of the proposed BCS-SAMP is less than that of the iterative techniques,especially at lower measurement fractions.展开更多
In this experiment the performance of UBF process treatment for wastewater chicken manure was tested under the condition of constant temperature of 35℃ and the volume of UBF is 4 liters. The experiment covered two s...In this experiment the performance of UBF process treatment for wastewater chicken manure was tested under the condition of constant temperature of 35℃ and the volume of UBF is 4 liters. The experiment covered two stages: the first was start up with phase I and phase II, the second was steady state. The following results average of operation period were obtained: (1) During the period of start up phase I operation the biogas production rate 0.39v/(v.day) at the volumetric COD loading rate of 2.97 kg COD/(m 3.d) with COD removal 76.85% and hydraulic retention time of 10.04 hours and phase II the biogas production rate 3.86 v/(v.day) at the volume loading rate 11.69 kg COD/(m 3.d) have been achieved with COD removal 82.47% and HRT 16.45 hours. UBF process had resistance to the quantitative shock load. (2) During the steady state operation, the biogas production rate 9.83v/(v.day) at loading rate of 28.85 kg COD/(m 3.d) and COD removal efficiency 80.03% and hydraulic retention time of 18.73 hours have been achieved for this reactor. The operation of UBF reactor was very stable.展开更多
文摘Sparsity adaptive matching pursuit(SAMP)is a greedy reconstruction algorithm for compressive sensing signals.SAMP reconstructs signals without prior information of sparsity and presents better reconstruction performance for noisy signals compared to other greedy algorithms.However,SAMP still suffers from relatively poor reconstruction quality especially at high compression ratios.In the proposed research,the Wilkinson matrix is used as a sensing matrix to improve the reconstruction quality and to increase the compression ratio of the SAMP technique.Furthermore,the idea of block compressive sensing(BCS)is combined with the SAMP technique to improve the performance of the SAMP technique.Numerous simulations have been conducted to evaluate the proposed BCS-SAMP technique and to compare its results with those of several compressed sensing techniques.Simulation results show that the proposed BCS-SAMP technique improves the reconstruction quality by up to six decibels(d B)relative to the conventional SAMP technique.In addition,the reconstruction quality of the proposed BCS-SAMP is highly comparable to that of iterative techniques.Moreover,the computation time of the proposed BCS-SAMP is less than that of the iterative techniques,especially at lower measurement fractions.
文摘In this experiment the performance of UBF process treatment for wastewater chicken manure was tested under the condition of constant temperature of 35℃ and the volume of UBF is 4 liters. The experiment covered two stages: the first was start up with phase I and phase II, the second was steady state. The following results average of operation period were obtained: (1) During the period of start up phase I operation the biogas production rate 0.39v/(v.day) at the volumetric COD loading rate of 2.97 kg COD/(m 3.d) with COD removal 76.85% and hydraulic retention time of 10.04 hours and phase II the biogas production rate 3.86 v/(v.day) at the volume loading rate 11.69 kg COD/(m 3.d) have been achieved with COD removal 82.47% and HRT 16.45 hours. UBF process had resistance to the quantitative shock load. (2) During the steady state operation, the biogas production rate 9.83v/(v.day) at loading rate of 28.85 kg COD/(m 3.d) and COD removal efficiency 80.03% and hydraulic retention time of 18.73 hours have been achieved for this reactor. The operation of UBF reactor was very stable.