Introduction: Computed tomography (CT) measurements of bone mineral attenuation may be a useful means to identify older women who should be prioritized for bone mineral density screening. Methods: We compared bone min...Introduction: Computed tomography (CT) measurements of bone mineral attenuation may be a useful means to identify older women who should be prioritized for bone mineral density screening. Methods: We compared bone mineral attenuation as measured in the L1 vertebra of CT studies to the results of dual-energy x-ray absorptiometry (DEXA) studies to determine what CT attenuation thresholds might yield a reasonable combination of sensitivity and specificity for the detection of osteoporosis. The study was limited to women between the ages of 65 and 75 years who had a DEXA study and a CT that included the L1 or adjacent vertebra performed within 3 years of the DEXA study. Results: There were 1226 women in this study, of whom 452 (38%) had osteoporosis based on a T-score ≤ −2.5 by DEXA. There were 830 CT studies performed with contrast and 396 studies which were performed without contrast. There was a statistically significant difference in the mean HU of those studies performed without contrast compared to those with contrast (unenhanced mean 103 HU versus 125 HU, p < 0.001). Different CT attenuation thresholds provided the most appropriate combination of sensitivity and specificity for the detection of osteoporosis when comparing CT studies performed without or with IV contrast and when all the CT data were used in aggregate. Conclusion: Different thresholds appear necessary when using the mean CT vertebral attenuation to identify older women for preferential referral for DEXA studies.展开更多
文摘Introduction: Computed tomography (CT) measurements of bone mineral attenuation may be a useful means to identify older women who should be prioritized for bone mineral density screening. Methods: We compared bone mineral attenuation as measured in the L1 vertebra of CT studies to the results of dual-energy x-ray absorptiometry (DEXA) studies to determine what CT attenuation thresholds might yield a reasonable combination of sensitivity and specificity for the detection of osteoporosis. The study was limited to women between the ages of 65 and 75 years who had a DEXA study and a CT that included the L1 or adjacent vertebra performed within 3 years of the DEXA study. Results: There were 1226 women in this study, of whom 452 (38%) had osteoporosis based on a T-score ≤ −2.5 by DEXA. There were 830 CT studies performed with contrast and 396 studies which were performed without contrast. There was a statistically significant difference in the mean HU of those studies performed without contrast compared to those with contrast (unenhanced mean 103 HU versus 125 HU, p < 0.001). Different CT attenuation thresholds provided the most appropriate combination of sensitivity and specificity for the detection of osteoporosis when comparing CT studies performed without or with IV contrast and when all the CT data were used in aggregate. Conclusion: Different thresholds appear necessary when using the mean CT vertebral attenuation to identify older women for preferential referral for DEXA studies.