We theoretically analyze a hybrid system consisting of a levitated neutral atom and a nanoparticle coupled to a cavity.The mechanical oscillator and the atom are effectively coupled to each other through the cavity ph...We theoretically analyze a hybrid system consisting of a levitated neutral atom and a nanoparticle coupled to a cavity.The mechanical oscillator and the atom are effectively coupled to each other through the cavity photons as a bus.By adjusting the driving lasers,we can conveniently switch the phonon-atom coupling between Jaynes-Cummings(JC)and anti-JC forms,which can be used to manipulate the motional states of the mechanical oscillator.As an application,we prepare a superposition state of the mechanical oscillator via the effective phonon-atom interaction and investigate the effects of dissipation on the state generation.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ22A040010)the Major Scientific Research Project of Zhejiang Lab(Grant No.2019 MB0AD01)。
文摘We theoretically analyze a hybrid system consisting of a levitated neutral atom and a nanoparticle coupled to a cavity.The mechanical oscillator and the atom are effectively coupled to each other through the cavity photons as a bus.By adjusting the driving lasers,we can conveniently switch the phonon-atom coupling between Jaynes-Cummings(JC)and anti-JC forms,which can be used to manipulate the motional states of the mechanical oscillator.As an application,we prepare a superposition state of the mechanical oscillator via the effective phonon-atom interaction and investigate the effects of dissipation on the state generation.