期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Quantitative contributions of solution atoms, precipitates and deformation to microstructures and properties of Al-Sc-Zr alloys 被引量:8
1
作者 Ren-guo GUAN Hong-mei JIN +5 位作者 Wensen JIANG Xiang WANG Yu-xiang WANG Zheng LI Jian ZHANG huinan liu 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期907-918,共12页
In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrus... In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires. 展开更多
关键词 Al.Sc.Zr alloy thermal treatment cold deformation mechanical properties CONDUCTIVITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部