Objective: To observe the clinical efficacy difference between electroacupuncture at Bǎihui(百会GV 20)and Yintáng(印堂EX-HN 3) and oral administration of sertraline hydrochloride for treatment of postschizo...Objective: To observe the clinical efficacy difference between electroacupuncture at Bǎihui(百会GV 20)and Yintáng(印堂EX-HN 3) and oral administration of sertraline hydrochloride for treatment of postschizophrenic depression.Methods: Sixty patients with post-schizophrenic depression were randomly divided into electroacupuncture group and western medicine group in the proportion of 1:1, with 30 patients in each group. The patients in the two groups were all given antipsychotics as the basic treatment. Electroacupuncture at GV 20 and EX-HN 3 was performed additionally in electroacupuncture group with 30 min/time and once every other day. The treatment was given for 3 times a week, lasting for 6 weeks. Oral administration of sertraline hydrochloride was given in western medicine group additionally for once a day, lasting for6 weeks. The comprehensive conditions of patients in the two groups were evaluated before and after treatment by adopting Global Assessment Scale(GAS). The degree of depression of patients in the two groups was assessed before treatment, after treatment for 1 week, 2 weeks and 4 weeks, after treatment as well as during follow-up visit by adopting Hamilton Depression Scale-17(HAMD-17).Results: GAS: GAS scores of the patients in the two groups after treatment were higher than those before treatment(both P〈0.05), but the difference of GAS scores of the patients in the two groups after treatment was not statistically significant. HAMD-17: The HAMD-17 scores of patients in electroacupuncture group reduced gradually in the six time points of before treatment, after treatment for 1 week, 2 weeks and 4 weeks, after treatment as well as during follow-up visit, and the differences of scores between the two adjacent time points were statistically significant(all P〈0.05). The HAMD-17 scores of patients in western medicine group reduced gradually in the 6 time points, and the differences of scores between the two adjacent time points among after treatment for 2 we展开更多
Two-dimensional(2D)van der Waals heterostructure(vdWH)-based floating gate devices show great potential for next-generation nonvolatile and multilevel data storage memory.However,high program voltage induced substanti...Two-dimensional(2D)van der Waals heterostructure(vdWH)-based floating gate devices show great potential for next-generation nonvolatile and multilevel data storage memory.However,high program voltage induced substantial energy consumption,which is one of the primary concerns,hinders their applications in lowenergy-consumption artificial synapses for neuromorphic computing.In this study,we demonstrate a three-terminal floating gate device based on the vdWH of tin disulfide(SnS2),hexagonal boron nitride(h-BN),and few-layer graphene.The large electron affinity of SnS2 facilitates a significant reduction in the program voltage of the device by lowering the hole-injection barrier across h-BN.Our floating gate device,as a nonvolatile multilevel electronic memory,exhibits large on/off current ratio(105),good retention(over 104 s),and robust endurance(over 1000 cycles).Moreover,it can function as an artificial synapse to emulate basic synaptic functions.Further,low energy consumption down to7 picojoule(pJ)can be achieved owing to the small program voltage.High linearity(<1)and conductance ratio(80)in long-term potentiation and depression(LTP/LTD)further contribute to the high pattern recognition accuracy(90%)in artificial neural network simulation.The proposed device with attentive band engineering can promote the future development of energy-efficient memory and neuromorphic devices.展开更多
Metal-organic frameworks(MOFs),comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous,crystalline materials.Their tunable porosity,chemical composition,size and shape,and e...Metal-organic frameworks(MOFs),comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous,crystalline materials.Their tunable porosity,chemical composition,size and shape,and easy surface functionalization make this large family more and more popular for drug delivery.There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications.This article presents an overall review and perspectives of MOFs-based drug delivery systems(DDSs),starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands.Then,the synthesis and characterization of MOFs for DDSs are developed,followed by the drug loading strategies,applications,biopharmaceutics and quality control.Importantly,a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics,diseases therapy and advanced DDSs.In particular,the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed.Finally,challenges in MOFs development for DDSs are discussed,such as biostability,biosafety,biopharmaceutics and nomenclature.展开更多
Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show ...Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show that from 1992 to 2004,the global cropland area increased by 840200 km^(2)(99.4%),but the grain yield increased only by 310 million t(29.1%);and from 2004 to 2015,the cropland area decreased by 39000 km^(2)(4.64%),but the grain yield increased by 370 million t(70.84%).This result showed that grain yield was not linearly correlated with cropland area,and delimiting the threshold of cropland protection may not guarantee food security.Combined with further correlation analysis,we found that the increase in the global grain yield was more closely related to the harvested area(R^(2)=0.94),which indicated that the harvested area is a more scientific and accurate indicator than cropland area in terms of guaranteeing food security.Therefore,if governments want to ensure the food security,they should choose a new and more accurate indicator:harvested area rather than cropland area.展开更多
Suancai is a traditional fermented vegetable widely consumed in Northeast China.In this study,different prebiotics were used to improve the quality of suancai.Four prebiotics(inulin(INU),xylooligosaccharide(XO S),gala...Suancai is a traditional fermented vegetable widely consumed in Northeast China.In this study,different prebiotics were used to improve the quality of suancai.Four prebiotics(inulin(INU),xylooligosaccharide(XO S),galactooligosaccharide(GOS),and stachyose(STA))were shown to reduce the pH value and increase the content of total titratable acidity(TTA)in suancai,while the contents of most organic acids were also increased.The addition of prebiotics had significant effects on the bacterial microbiota during the suancai fermentation process.All prebiotics were shown to contribute to the growth of Lactobacillus.The suancai sample with fructooligosaccharides(FOS)had the highest relative abundance of Lactobacillus.Besides,INU and XOS could increase the abundance of Weissella.To evaluate the quality of suancai fermented with prebiotics,profiles of volatile flavor compounds(VOCs)and free amino acids(FAA)were analyzed.The prebiotics affected the VOCs and FAA profiles via transforming the bacterial microbiota.In addition,the addition of prebiotics also changed the taste profiles of the suancai samples.This study is among the first attempts to reveal the effects of different prebiotics on suancai fermentation,and the findings provide a foundation to develop new ways for improving the quality of suancai.展开更多
In this study, the solubility of m-phenylenediamine in four pure solvents(methanol, ethanol, acetonitrile and water) and three binary solvent(methanol + water),(ethanol + water) and(acetonitrile + water) systems were ...In this study, the solubility of m-phenylenediamine in four pure solvents(methanol, ethanol, acetonitrile and water) and three binary solvent(methanol + water),(ethanol + water) and(acetonitrile + water) systems were determined in the temperature ranging from 278.15 K to 313.15 K by using the gravimetric method under atmospheric pressure. In the temperature range of 278.15 K to 313.15 K, the mole fraction solubility values of m-phenylenediamine in water, methanol, ethanol, and acetonitrile are 0.0093–0.1533, 0.1668–0.5589,0.1072–0.5356, and 0.1717–0.6438, respectively. At constant temperature and solvent composition, the mole fraction solubility of o-phenylenediamine in four pure solvents was increased as the following order:water b ethanol b methanol b acetonitrile;and in the three binary solvent mixtures could be ranked as follows:(ethanol + water) b(methanol + water) b(acetonitrile + water). The relationship between the experimental temperature and the solubility of m-phenylenediamine was revealed as follows: the solubility of mphenylenediamine in pure and binary solvents could be increased with the increase of temperature. The experimental values were correlated with the Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model, Sun model and Ma model. The standard dissolution enthalpy, standard dissolution entropy and the Gibbs energy were calculated based on the experimental solubility data. In the binary solvent mixtures, the dissolution of m-phenylenediamine could be an endothermic process. The solubility data,correlation equations and thermodynamic property obtained from this study would be invoked as basic data and models regarding the purification and crystallization process of m-phenylenediamine.展开更多
Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped sta...Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped stalks has been limited. Therefore, in this study, computational fluid dynamics (CFD) technology was applied to analyze the influence of structural and operational parameters of the chopping and spreading machine on the velocity, pressure, and turbulent kinetic energy distribution of airflow in the chopping chamber. The experimental factors considered were the relative position angle (RPA) between the collecting-chopping shaft and the sliding-supporting shaft, working velocity (WV) of the chopping chamber, and rotational velocity of the collecting-chopping blade (RVCCB). The results revealed that RPA and RVCCB had a significant influence on the maximum negative pressure in the inlet (MNPI), the proportion of negative pressure area at inlet (PNPAI), and the maximum pressure drop at inlet and outlet (MPDIO). Additionally, RVCCB had a strong influence on the maximum velocity, average velocity, and velocity variation coefficient of airflow at the outlet. Moreover, maximum turbulence (MT) and maximum turbulent kinetic energy dissipation rate (MTKEDR) showed a positive relationship with RVCCB. To determine the values of RPA, RVCCB, and WV, a multivariate parameters optimization regression model was constructed, which yielded the optimal values of 15°, 1800 r/min, and 0.50 m/s, respectively. Subsequently, a hyperbolic spiral-type guiding shell with an arc length of 90° was designed to enhance the uniform distribution of airflow in the chopping chamber. Finally, a validation experiment of airflow distribution was conducted. The results showed that the velocity difference between the simulation and the validation experiment was less than 15%, indicating the accuracy of CFD simulation, and the spreading uniformities of the chopped stalks were better than national standards. These findings can serve as technical展开更多
Industry progressing caused the pollutants into the surface and groundwater,including organic pollutants such as phenylenediamine(PD)and heavy metals such as Cr(Ⅵ).Herein,a simple"three-in-one"strategy base...Industry progressing caused the pollutants into the surface and groundwater,including organic pollutants such as phenylenediamine(PD)and heavy metals such as Cr(Ⅵ).Herein,a simple"three-in-one"strategy based on MOF-199 was demonstrated.The MOF-199 catalytic system could be used for the rapid detection of Cr(Ⅵ)and o-phenylenediamine(OPD)in linear ranges of 0.5-50.0μmol/L and 7.0-250.0μmol/L,with the limits of detection of 0.1 and 0.5μmol/L,respectively.This method can also efficiently discriminate PD isomers in just 15 min.Meanwhile,Cr(Ⅵ)was reduced to Cr(Ⅲ)and the elimination of OPD was carried out.Given simple synthesis,high sensitivity,easy operation,and low cost,this method presented a potential platform for on-site detection of pollutants in water samples.展开更多
Purification of original crude glycerol obtained from biodiesel production was conducted in a laboratory scale equipment by means of a combined chemical and physical treatment method based upon repeated cycles of acid...Purification of original crude glycerol obtained from biodiesel production was conducted in a laboratory scale equipment by means of a combined chemical and physical treatment method based upon repeated cycles of acidification of liquid phase to the desired pH value by using 5.85% H3PO4 solution for pH value adjustment, and the mixture was kept at 70 ℃ for 60 rain to make phase separation for obtaining a glycerol-rich middle phase. The yield of crude glycerol reached 81.2%. Subsequently, upon reaction of the obtained glycerol phase with 0.03% of sodium oxalate at 80 ℃ for 30 min the impurity removal rate was equal to 19.8%. The fraction boiling between 164 ℃ and 200 ℃ was collected by vacuum distil- lation followed by decolorization with 2% of active carbon at 80 ℃ for two times to yield the product glycerol with an ac- ceptable purity of 98.10%.展开更多
As a form of consumption based on the digital content and traits of goods and services,digital consumption is characterized by a strong dependence on the digital technology infrastructure,precise identification of con...As a form of consumption based on the digital content and traits of goods and services,digital consumption is characterized by a strong dependence on the digital technology infrastructure,precise identification of consumer demand,adaptability to new business modes,swift consumer feedback and response,and great market potentials.Under the dual driving forces of technology empowerment and consumption upgrade,China s digital consumption has been growing rapidly,digitalization is empowering traditional sectors of consumption,and the consumption of digital content is expanding.Consumer potential for digital consumption is being unleashed in low-tier cities,and new-generation consumers are gaining influence.With an increasing number of digital consumers,new consumption modes and services have proliferated thanks to the improving digital infrastructure.Growing digital consumption has created an increasing demand-pulling effect that spurs product and service innovation,corporate internal process digitalization,and changes in corporate organization and decision-making.Driven by digital consumption,industrial chain upgrade and restructuring and business mode innovations will improve user experience and firm efficiency,contributing to the quality,efficiency,and dynamism of the manufacturing industry.Amid surging digital consumption,the digital transition of manufacturing is still faced with some problems and challenges.It is important to deepen the user-centric concepts and modes of value creation,create a differentiated service system,optimize digital resource allocation,enhance digital brand management,and scale up R&D and innovation of products and services.展开更多
This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)...This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.展开更多
ZSM-5/SBA-15 composite molecular sieves were synthesized using post-synthesis method and characterized by X-ray diffraction and N2 adsorption-desorption. The oxidative-extration desulfurization of model oil was invest...ZSM-5/SBA-15 composite molecular sieves were synthesized using post-synthesis method and characterized by X-ray diffraction and N2 adsorption-desorption. The oxidative-extration desulfurization of model oil was investigated by using hydrogen peroxide as the oxidant, tetrabutyl ammonium bromide as phase transfer catalyst, dimethyl sulfoxide as extractant, and Zr-ZSM-5/ SBA-15, Ag-ZSM-5/SBA-15, Ce-ZSM-5/SBA-15 as catalyst. Under the optimal conditions, the desulfurization rate decreases in the order: Zr-ZSM-5/SBA-15 〉 Ce-ZSM- 5/SBA-15 〉 Ag-ZSM-5/SBA-15. The highest desulfuriza- tion rate is 84.53% under the catalysis of Zr-ZSM-5/SBA- 15. Kinetics analysis shows that the reaction is pseudofirst-order with the activation energy of 44.23 kJ/mol.展开更多
RNA interference(RNAi)has emerged as a powerful tool for developing novel management strategies for controlling insect pests.The 28-spotted ladybeetle,Henosepilachna vigintioctopunctata is one of the most important pe...RNA interference(RNAi)has emerged as a powerful tool for developing novel management strategies for controlling insect pests.The 28-spotted ladybeetle,Henosepilachna vigintioctopunctata is one of the most important pests attacking solanaceous plants in Asia.In this study,the potential of dietary RNAi to manage H.vigintioctopunctata was investigated using both in vitro synthesized and bacterially expressed double-stranded RNAs(dsRNAs)of HvvATPase A and HvvATPase E.The expression levels of HvvATPase A and HvvATPase E were higher in Malpighian tubules than in other tissue types.The silencing of HvvATPase A and HvvATPase E led to significant mortality in H.vigintioctopunctata larvae.In addition,the ingestion of HvvATPase A and HvvATPase E significantly deterred feeding behavior and subsequently arrested the development of H.vigintioctopunctata.Notably,the bacterially expressed dsRNAs consistently caused higher mortality in larvae and adults.Finally,the nontarget effects of the dsRNAs of H.vigintioctopunctata on the predatory ladybeetle Propylaea japonica were evaluated.P.japonica 1st instar larvae were administered vATPase A and vATPase E dsRNAs from H.vigintioctopunctata and P.japonica under the worst-case scenario,in which dsGFP served as negative control.There were significant effects of dsHvvATPase A on P.japonica at the transcriptional level but not at the organismal level,whereas dsHvvATPase E did not effect P.japonica at either the transcriptional or the organismal level.Collectively,the results of the study suggest that HvvATPase A and HvvATPase E can act as novel molecular targets for the control of H.vigintioctopunctata.展开更多
This study investigated the effects of salt(3%and 6%,m/m)and rice flour(10%and 20%,m/m)addition in sour meat,a traditional Chinese fermented meat.It was found that salt has greater effect than rice flour addition in s...This study investigated the effects of salt(3%and 6%,m/m)and rice flour(10%and 20%,m/m)addition in sour meat,a traditional Chinese fermented meat.It was found that salt has greater effect than rice flour addition in spontaneous fermentation.Low-salt groups had lower pH and higher titratable total acid.In the low-salt groups,the dominant genera were Lactobacillus and Lactococcus,whereas Staphylococcus,Weissella,and Tetragenococcus were dominant in the high-salt groups.Higher total free amino acids and essential amino acids,organic acids,hexanoic acid ethyl ester and octanoic acid ethyl ester were found in the low-salt groups.The RDA analysis revealed that Lactococcus was closely related to product quality,with the S3F10(3%salt and 10%rice f lour)group outperforming the others in the sensory evaluation.Therefore,3%salt and 10%rice flour were considered more appropriate for the production of healthy and tasty fermented sour meats.展开更多
Background:Colorectal liver metastasis(CRLM)exhibits highly heterogeneity,with clinically and molecularly defined subgroups that differ in their prognosis.The aim of this study is to explore whether left-sided tumors ...Background:Colorectal liver metastasis(CRLM)exhibits highly heterogeneity,with clinically and molecularly defined subgroups that differ in their prognosis.The aim of this study is to explore whether left-sided tumors is clinically and gnomically distinct from right-sided tumors in CRLM.Methods:This retrospective study included 1,307 patients who underwent primary tumor and metastases resection at three academic centers in China from January 1,2012,to December 31,2020.Propensity score matching with 1:1 ratio matching was performed.The prognostic impact of tumor sidedness was determined after stratifying by the KRAS mutational status.Moreover,whole-exome sequencing(WES)of 200 liver tumor tissues were performed to describe the heterogeneity across the analysis of somatic and germline profiles.Results:The median follow-up was 68 months.Matching yielded 481 pairs of patients.Compared to right-sided CRLM,left-sided patients experienced with better 5-year overall survival(OS)in surgery responsiveness,with a 14.6 lower risk of death[hazard ratio(HR),1.36,95%confidence interval(CI),1.10-1.69,P=0.004].Interaction between tumor sidedness and KRAS status was statistically significant:left-sidedness was associated with better prognosis among KRAS wild-type patients(HR 1.71;95%CI:1.20-2.45;P=0.003),but not among KRAS mutated-type patients.Integrated molecular analyses showed that right-sided tumors more frequently harbored TP53,APC,KRAS,and BRAF alterations,and identified a critical role of KRAS mutation in correlation with their survival differences.Higher pathogenic germline variants were identified in the right-sided tumors compared with left-sided tumors(29.3%vs.15.5%,P=0.03).Conclusions:We demonstrated that the prognostic impacts of tumor sidedness in CRLM is restricted patients with KRAS wild-type tumors.Tumor sidedness displays considerable clinical and molecular heterogeneity that may associate with their therapy benefits and prognosis.展开更多
Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity.However,no reliable method is currently available to assess its impact on delivery performance.In t...Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity.However,no reliable method is currently available to assess its impact on delivery performance.In this study,a biomimetic nasal model based on three-dimensional(3D)reconstruction and three-dimensional printing(3DP)technology was developed for visualizing the deposition of drug powders in the nasal cavity.The results showed significant differences in cavity area and volume and powder distribution in the anterior part of the biomimetic nasal model of Chinese males and females.The nasal cavity model was modified with dimethicone and validated to be suitable for the deposition test.The experimental device produced the most satisfactory results with five spray times.Furthermore,particle sizes and spray angles were found to significantly affect the experimental device’s performance and alter drug distribution,respectively.Additionally,mometasone furoate(MF)nasal spray(NS)distribution patterns were investigated in a goat nasal cavity model and three male goat noses,confirming the in vitro and in vivo correlation.In conclusion,the developed human nasal structure biomimetic device has the potential to be a valuable tool for assessing nasal drug delivery system deposition and distribution.展开更多
Advanced electromagnetic(EM)wave absorbers with wide bandwidth is crucial to avoid EM interference and radiation,while achieving compensatio nal attenuation at different frequencies is challe nging.Herein,two-dimensio...Advanced electromagnetic(EM)wave absorbers with wide bandwidth is crucial to avoid EM interference and radiation,while achieving compensatio nal attenuation at different frequencies is challe nging.Herein,two-dimensional(2 D)sandwiched FeNi@SnO_(2)have been designed,for which SnO_(2)nanosheets provide numerous heterogeneous nucleation sites for the growth of dispersive FeNi nanoparticles with reduced size.The SnO_(2)exhibits dipole polarization at 21.45 GHz with a width of~4.00 GHz,while the FeNi nanoparticles induce excha nge resonance at 18.13 GHz(~6.00 GHz width)and interfacial polarization at15.97 GHz(~6.00 GHz width).Such complementary attenuation mechanisms give rise to an impressive ultra-wide effective absorption bandwidth of 11.70 GHz with strong absorption of-49.1 dB at a small thickness of 1.75 mm.Not only superior EM wave absorption is achieved in this work,it also provides a versatile strategy to integrate different loss mechanisms in the design of EM wave absorbers with extra-wide bandwidth.展开更多
Signal processing has entered the era of big data,and improving processing efficiency becomes crucial.Traditional computing architectures face computational efficiency limitations due to the separation of storage and ...Signal processing has entered the era of big data,and improving processing efficiency becomes crucial.Traditional computing architectures face computational efficiency limitations due to the separation of storage and computation.Array circuits based on multi-conductor devices enable full hardware convolutional neural networks(CNNs),which hold great potential to improve computational efficiency.However,when processing large-scale convolutional computations,there is still a significant amount of device redundancy,resulting in low computational power consumption and high computational costs.Here,we innovatively propose a memristor-based in-situ convolutional strategy,which uses the dynamic changes in the conductive wire,doping area,and polarization area of memristors as the process of convolutional operations,and uses the time required for conductance switching of a single device as the computation result,embodying convolutional computation through the unique spiked digital signal of the memristor.Our strategy reasonably encodes complex analog signals into simple digital signals through a memristor,completing the convolutional computation at the device level,which is essential for complex signal processing and computational efficiency improvement.Based on the implementation of device-level convolutional computing,we have achieved feature recognition and noise filtering for braille signals.We believe that our successful implementation of convolutional computing at the device level will promote the construction of complex CNNs with large-scale convolutional computing capabilities,bringing innovation and development to the field of neuromorphic computing.展开更多
Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data,which is crucial for advancing artificial intelligence.However,owing to the single physic...Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data,which is crucial for advancing artificial intelligence.However,owing to the single physical node mapping characteristic of traditional memristor reservoir computing,it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks.Hence,this work firstly reports an artificial light-emitting synaptic(LES)device with dual photoelectric output for reservoir computing,and a reservoir system with mixed physical nodes is proposed.The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities,namely optical output with nonlinear optical effects and electrical output with memory characteristics.Unlike previously reported memristor-based reservoir systems,which pursue rich reservoir states in one physical dimension,our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices.The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22%in MNIST recognition.Furthermore,the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir,resulting in a recognition accuracy of 99.25%.The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.展开更多
Electrolytic water is considered to be the first choice for large-scale industrial hydrogen production in the future due to its good matching with wind power,photovoltaic and other renewable energy power generation sy...Electrolytic water is considered to be the first choice for large-scale industrial hydrogen production in the future due to its good matching with wind power,photovoltaic and other renewable energy power generation systems[1].In recent years,the emerging proton exchange membrane(PEM)water electrolysis for hydrogen production(Fig.1(a))has gradually become the mainstream development direction due to its advantages such as fast start and stop,high working current density(greater than 1 A.cm^(-2)),small size of electrolytic cell,and good matching with renewable electric energy.However,in acidic electrolytes,the ki-netics of oxygen evolution reaction(OER)half-reaction is very slow.In addition,the lower commercial value of anode O_(2)further reduces the economic benefits of traditional PEM technology.Therefore,from the perspective of reducing energy consumption and improving economic benefits,finding a more dynamic and/or thermodynamic OER alternative oxidation reaction has become the key to promote the practical appli-cation of hydrogen production by electrolytic water[2].展开更多
基金Supported by Medical Science Foundation in Zhongshan City:2017A02056~~
文摘Objective: To observe the clinical efficacy difference between electroacupuncture at Bǎihui(百会GV 20)and Yintáng(印堂EX-HN 3) and oral administration of sertraline hydrochloride for treatment of postschizophrenic depression.Methods: Sixty patients with post-schizophrenic depression were randomly divided into electroacupuncture group and western medicine group in the proportion of 1:1, with 30 patients in each group. The patients in the two groups were all given antipsychotics as the basic treatment. Electroacupuncture at GV 20 and EX-HN 3 was performed additionally in electroacupuncture group with 30 min/time and once every other day. The treatment was given for 3 times a week, lasting for 6 weeks. Oral administration of sertraline hydrochloride was given in western medicine group additionally for once a day, lasting for6 weeks. The comprehensive conditions of patients in the two groups were evaluated before and after treatment by adopting Global Assessment Scale(GAS). The degree of depression of patients in the two groups was assessed before treatment, after treatment for 1 week, 2 weeks and 4 weeks, after treatment as well as during follow-up visit by adopting Hamilton Depression Scale-17(HAMD-17).Results: GAS: GAS scores of the patients in the two groups after treatment were higher than those before treatment(both P〈0.05), but the difference of GAS scores of the patients in the two groups after treatment was not statistically significant. HAMD-17: The HAMD-17 scores of patients in electroacupuncture group reduced gradually in the six time points of before treatment, after treatment for 1 week, 2 weeks and 4 weeks, after treatment as well as during follow-up visit, and the differences of scores between the two adjacent time points were statistically significant(all P〈0.05). The HAMD-17 scores of patients in western medicine group reduced gradually in the 6 time points, and the differences of scores between the two adjacent time points among after treatment for 2 we
基金National Natural Science Foundation of China,Grant/Award Numbers:U2032147,21872100Singapore MOE Grant,Grant/Award Number:MOE-2019-T2-1-002the Science and Engineering Research Council of A*STAR(Agency for Science,Technology and Research)Singapore,Grant/Award Number:A20G9b0135。
文摘Two-dimensional(2D)van der Waals heterostructure(vdWH)-based floating gate devices show great potential for next-generation nonvolatile and multilevel data storage memory.However,high program voltage induced substantial energy consumption,which is one of the primary concerns,hinders their applications in lowenergy-consumption artificial synapses for neuromorphic computing.In this study,we demonstrate a three-terminal floating gate device based on the vdWH of tin disulfide(SnS2),hexagonal boron nitride(h-BN),and few-layer graphene.The large electron affinity of SnS2 facilitates a significant reduction in the program voltage of the device by lowering the hole-injection barrier across h-BN.Our floating gate device,as a nonvolatile multilevel electronic memory,exhibits large on/off current ratio(105),good retention(over 104 s),and robust endurance(over 1000 cycles).Moreover,it can function as an artificial synapse to emulate basic synaptic functions.Further,low energy consumption down to7 picojoule(pJ)can be achieved owing to the small program voltage.High linearity(<1)and conductance ratio(80)in long-term potentiation and depression(LTP/LTD)further contribute to the high pattern recognition accuracy(90%)in artificial neural network simulation.The proposed device with attentive band engineering can promote the future development of energy-efficient memory and neuromorphic devices.
基金financially supported by the National Key R&D Program of China(No.2020YFE0201700)National Nature Science Foundation of China(No.81773645)a public grant overseen by the French National Research Agency(ANR),France as part of the“Investissements d’Avenir”program(Labex NanoSaclay:ANR-10-LABX-0035,France)
文摘Metal-organic frameworks(MOFs),comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous,crystalline materials.Their tunable porosity,chemical composition,size and shape,and easy surface functionalization make this large family more and more popular for drug delivery.There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications.This article presents an overall review and perspectives of MOFs-based drug delivery systems(DDSs),starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands.Then,the synthesis and characterization of MOFs for DDSs are developed,followed by the drug loading strategies,applications,biopharmaceutics and quality control.Importantly,a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics,diseases therapy and advanced DDSs.In particular,the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed.Finally,challenges in MOFs development for DDSs are discussed,such as biostability,biosafety,biopharmaceutics and nomenclature.
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB40000000,XDA23060100)National Natural Science Foundation of China(No.42077455)+1 种基金Western Light Talent Program(Category A)(No.2018-99)United Fund of Karst Science Research Center(No.U1612441)。
文摘Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show that from 1992 to 2004,the global cropland area increased by 840200 km^(2)(99.4%),but the grain yield increased only by 310 million t(29.1%);and from 2004 to 2015,the cropland area decreased by 39000 km^(2)(4.64%),but the grain yield increased by 370 million t(70.84%).This result showed that grain yield was not linearly correlated with cropland area,and delimiting the threshold of cropland protection may not guarantee food security.Combined with further correlation analysis,we found that the increase in the global grain yield was more closely related to the harvested area(R^(2)=0.94),which indicated that the harvested area is a more scientific and accurate indicator than cropland area in terms of guaranteeing food security.Therefore,if governments want to ensure the food security,they should choose a new and more accurate indicator:harvested area rather than cropland area.
基金supported by National Natural Science Foundation of China (31901809)the Doctoral Research Start-up Fund of Dalian Polytechnic University (6102072007)。
文摘Suancai is a traditional fermented vegetable widely consumed in Northeast China.In this study,different prebiotics were used to improve the quality of suancai.Four prebiotics(inulin(INU),xylooligosaccharide(XO S),galactooligosaccharide(GOS),and stachyose(STA))were shown to reduce the pH value and increase the content of total titratable acidity(TTA)in suancai,while the contents of most organic acids were also increased.The addition of prebiotics had significant effects on the bacterial microbiota during the suancai fermentation process.All prebiotics were shown to contribute to the growth of Lactobacillus.The suancai sample with fructooligosaccharides(FOS)had the highest relative abundance of Lactobacillus.Besides,INU and XOS could increase the abundance of Weissella.To evaluate the quality of suancai fermented with prebiotics,profiles of volatile flavor compounds(VOCs)and free amino acids(FAA)were analyzed.The prebiotics affected the VOCs and FAA profiles via transforming the bacterial microbiota.In addition,the addition of prebiotics also changed the taste profiles of the suancai samples.This study is among the first attempts to reveal the effects of different prebiotics on suancai fermentation,and the findings provide a foundation to develop new ways for improving the quality of suancai.
基金financially supported by the North Chemical Group Youth Science and Technology Innovation Foundation of China(QKCZ201627)
文摘In this study, the solubility of m-phenylenediamine in four pure solvents(methanol, ethanol, acetonitrile and water) and three binary solvent(methanol + water),(ethanol + water) and(acetonitrile + water) systems were determined in the temperature ranging from 278.15 K to 313.15 K by using the gravimetric method under atmospheric pressure. In the temperature range of 278.15 K to 313.15 K, the mole fraction solubility values of m-phenylenediamine in water, methanol, ethanol, and acetonitrile are 0.0093–0.1533, 0.1668–0.5589,0.1072–0.5356, and 0.1717–0.6438, respectively. At constant temperature and solvent composition, the mole fraction solubility of o-phenylenediamine in four pure solvents was increased as the following order:water b ethanol b methanol b acetonitrile;and in the three binary solvent mixtures could be ranked as follows:(ethanol + water) b(methanol + water) b(acetonitrile + water). The relationship between the experimental temperature and the solubility of m-phenylenediamine was revealed as follows: the solubility of mphenylenediamine in pure and binary solvents could be increased with the increase of temperature. The experimental values were correlated with the Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model, Sun model and Ma model. The standard dissolution enthalpy, standard dissolution entropy and the Gibbs energy were calculated based on the experimental solubility data. In the binary solvent mixtures, the dissolution of m-phenylenediamine could be an endothermic process. The solubility data,correlation equations and thermodynamic property obtained from this study would be invoked as basic data and models regarding the purification and crystallization process of m-phenylenediamine.
基金supported by Natural Science Foundation of Henan Province(Grant No.242300421560)Science and Technology Research Project of Henan(Grant No.232102110273)+2 种基金the Scientific Research Foundation for Advanced Talents of Henan University of Technology(Grant No.2022BS077)Training Plan of Young Backbone Teachers in Colleges and Universities in Henan Province(Grant No.2020GGJS088)the Cultivation Programme for Young Backbone Teachers in Henan University of Technology(Grant No.0503/21420191).
文摘Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped stalks has been limited. Therefore, in this study, computational fluid dynamics (CFD) technology was applied to analyze the influence of structural and operational parameters of the chopping and spreading machine on the velocity, pressure, and turbulent kinetic energy distribution of airflow in the chopping chamber. The experimental factors considered were the relative position angle (RPA) between the collecting-chopping shaft and the sliding-supporting shaft, working velocity (WV) of the chopping chamber, and rotational velocity of the collecting-chopping blade (RVCCB). The results revealed that RPA and RVCCB had a significant influence on the maximum negative pressure in the inlet (MNPI), the proportion of negative pressure area at inlet (PNPAI), and the maximum pressure drop at inlet and outlet (MPDIO). Additionally, RVCCB had a strong influence on the maximum velocity, average velocity, and velocity variation coefficient of airflow at the outlet. Moreover, maximum turbulence (MT) and maximum turbulent kinetic energy dissipation rate (MTKEDR) showed a positive relationship with RVCCB. To determine the values of RPA, RVCCB, and WV, a multivariate parameters optimization regression model was constructed, which yielded the optimal values of 15°, 1800 r/min, and 0.50 m/s, respectively. Subsequently, a hyperbolic spiral-type guiding shell with an arc length of 90° was designed to enhance the uniform distribution of airflow in the chopping chamber. Finally, a validation experiment of airflow distribution was conducted. The results showed that the velocity difference between the simulation and the validation experiment was less than 15%, indicating the accuracy of CFD simulation, and the spreading uniformities of the chopped stalks were better than national standards. These findings can serve as technical
基金supported by the National Natural Science Foundation of China(NSFC)Fund(22174058,U21A20282)Sci-tech plan projects of Gansu province(22CX3GA023).
文摘Industry progressing caused the pollutants into the surface and groundwater,including organic pollutants such as phenylenediamine(PD)and heavy metals such as Cr(Ⅵ).Herein,a simple"three-in-one"strategy based on MOF-199 was demonstrated.The MOF-199 catalytic system could be used for the rapid detection of Cr(Ⅵ)and o-phenylenediamine(OPD)in linear ranges of 0.5-50.0μmol/L and 7.0-250.0μmol/L,with the limits of detection of 0.1 and 0.5μmol/L,respectively.This method can also efficiently discriminate PD isomers in just 15 min.Meanwhile,Cr(Ⅵ)was reduced to Cr(Ⅲ)and the elimination of OPD was carried out.Given simple synthesis,high sensitivity,easy operation,and low cost,this method presented a potential platform for on-site detection of pollutants in water samples.
基金the financial support from Scientific Research Foundation for Doctoral Program of Liaoning Province(20081104)
文摘Purification of original crude glycerol obtained from biodiesel production was conducted in a laboratory scale equipment by means of a combined chemical and physical treatment method based upon repeated cycles of acidification of liquid phase to the desired pH value by using 5.85% H3PO4 solution for pH value adjustment, and the mixture was kept at 70 ℃ for 60 rain to make phase separation for obtaining a glycerol-rich middle phase. The yield of crude glycerol reached 81.2%. Subsequently, upon reaction of the obtained glycerol phase with 0.03% of sodium oxalate at 80 ℃ for 30 min the impurity removal rate was equal to 19.8%. The fraction boiling between 164 ℃ and 200 ℃ was collected by vacuum distil- lation followed by decolorization with 2% of active carbon at 80 ℃ for two times to yield the product glycerol with an ac- ceptable purity of 98.10%.
文摘As a form of consumption based on the digital content and traits of goods and services,digital consumption is characterized by a strong dependence on the digital technology infrastructure,precise identification of consumer demand,adaptability to new business modes,swift consumer feedback and response,and great market potentials.Under the dual driving forces of technology empowerment and consumption upgrade,China s digital consumption has been growing rapidly,digitalization is empowering traditional sectors of consumption,and the consumption of digital content is expanding.Consumer potential for digital consumption is being unleashed in low-tier cities,and new-generation consumers are gaining influence.With an increasing number of digital consumers,new consumption modes and services have proliferated thanks to the improving digital infrastructure.Growing digital consumption has created an increasing demand-pulling effect that spurs product and service innovation,corporate internal process digitalization,and changes in corporate organization and decision-making.Driven by digital consumption,industrial chain upgrade and restructuring and business mode innovations will improve user experience and firm efficiency,contributing to the quality,efficiency,and dynamism of the manufacturing industry.Amid surging digital consumption,the digital transition of manufacturing is still faced with some problems and challenges.It is important to deepen the user-centric concepts and modes of value creation,create a differentiated service system,optimize digital resource allocation,enhance digital brand management,and scale up R&D and innovation of products and services.
基金supported by the National Natural Science Foundation of China(Grant No.42176015)the National Natural Science Foundation of China(Grant No.41605070)+3 种基金the National Key Research and Development Program(Grant No.2021YFC3101500)the Hunan Provincial Natural Science Outstanding Youth Fund(Grant No.2023JJ10053)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022001)a project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2021SP207)。
文摘This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.
文摘ZSM-5/SBA-15 composite molecular sieves were synthesized using post-synthesis method and characterized by X-ray diffraction and N2 adsorption-desorption. The oxidative-extration desulfurization of model oil was investigated by using hydrogen peroxide as the oxidant, tetrabutyl ammonium bromide as phase transfer catalyst, dimethyl sulfoxide as extractant, and Zr-ZSM-5/ SBA-15, Ag-ZSM-5/SBA-15, Ce-ZSM-5/SBA-15 as catalyst. Under the optimal conditions, the desulfurization rate decreases in the order: Zr-ZSM-5/SBA-15 〉 Ce-ZSM- 5/SBA-15 〉 Ag-ZSM-5/SBA-15. The highest desulfuriza- tion rate is 84.53% under the catalysis of Zr-ZSM-5/SBA- 15. Kinetics analysis shows that the reaction is pseudofirst-order with the activation energy of 44.23 kJ/mol.
基金supported by the National Key R&D Program of China(2017YFD0200900)National Natural Science Foundation of China(31972269)GDUPS(2017).
文摘RNA interference(RNAi)has emerged as a powerful tool for developing novel management strategies for controlling insect pests.The 28-spotted ladybeetle,Henosepilachna vigintioctopunctata is one of the most important pests attacking solanaceous plants in Asia.In this study,the potential of dietary RNAi to manage H.vigintioctopunctata was investigated using both in vitro synthesized and bacterially expressed double-stranded RNAs(dsRNAs)of HvvATPase A and HvvATPase E.The expression levels of HvvATPase A and HvvATPase E were higher in Malpighian tubules than in other tissue types.The silencing of HvvATPase A and HvvATPase E led to significant mortality in H.vigintioctopunctata larvae.In addition,the ingestion of HvvATPase A and HvvATPase E significantly deterred feeding behavior and subsequently arrested the development of H.vigintioctopunctata.Notably,the bacterially expressed dsRNAs consistently caused higher mortality in larvae and adults.Finally,the nontarget effects of the dsRNAs of H.vigintioctopunctata on the predatory ladybeetle Propylaea japonica were evaluated.P.japonica 1st instar larvae were administered vATPase A and vATPase E dsRNAs from H.vigintioctopunctata and P.japonica under the worst-case scenario,in which dsGFP served as negative control.There were significant effects of dsHvvATPase A on P.japonica at the transcriptional level but not at the organismal level,whereas dsHvvATPase E did not effect P.japonica at either the transcriptional or the organismal level.Collectively,the results of the study suggest that HvvATPase A and HvvATPase E can act as novel molecular targets for the control of H.vigintioctopunctata.
基金supported by the National Key Research and Development Project(2022YFD2100902)National Natural Science Foundation of China(32372363)+1 种基金Dalian High-level Talent Innovation Support Program(2021RQ093)the Basic Research Project of Education Department of Liaoning Province(LJKZ0544).
文摘This study investigated the effects of salt(3%and 6%,m/m)and rice flour(10%and 20%,m/m)addition in sour meat,a traditional Chinese fermented meat.It was found that salt has greater effect than rice flour addition in spontaneous fermentation.Low-salt groups had lower pH and higher titratable total acid.In the low-salt groups,the dominant genera were Lactobacillus and Lactococcus,whereas Staphylococcus,Weissella,and Tetragenococcus were dominant in the high-salt groups.Higher total free amino acids and essential amino acids,organic acids,hexanoic acid ethyl ester and octanoic acid ethyl ester were found in the low-salt groups.The RDA analysis revealed that Lactococcus was closely related to product quality,with the S3F10(3%salt and 10%rice f lour)group outperforming the others in the sensory evaluation.Therefore,3%salt and 10%rice flour were considered more appropriate for the production of healthy and tasty fermented sour meats.
基金supported by National Natural Science Foundation of China(81874182,M-0334)Natural Science Foundation of Shanghai(22ZR1413300)+2 种基金National Science and Technology Major Project(2017ZX10203204-007-004)Shanghai Municipal Health Bureau(201940043)Shanghai Hospital Development Center(SHDC12019X19).
文摘Background:Colorectal liver metastasis(CRLM)exhibits highly heterogeneity,with clinically and molecularly defined subgroups that differ in their prognosis.The aim of this study is to explore whether left-sided tumors is clinically and gnomically distinct from right-sided tumors in CRLM.Methods:This retrospective study included 1,307 patients who underwent primary tumor and metastases resection at three academic centers in China from January 1,2012,to December 31,2020.Propensity score matching with 1:1 ratio matching was performed.The prognostic impact of tumor sidedness was determined after stratifying by the KRAS mutational status.Moreover,whole-exome sequencing(WES)of 200 liver tumor tissues were performed to describe the heterogeneity across the analysis of somatic and germline profiles.Results:The median follow-up was 68 months.Matching yielded 481 pairs of patients.Compared to right-sided CRLM,left-sided patients experienced with better 5-year overall survival(OS)in surgery responsiveness,with a 14.6 lower risk of death[hazard ratio(HR),1.36,95%confidence interval(CI),1.10-1.69,P=0.004].Interaction between tumor sidedness and KRAS status was statistically significant:left-sidedness was associated with better prognosis among KRAS wild-type patients(HR 1.71;95%CI:1.20-2.45;P=0.003),but not among KRAS mutated-type patients.Integrated molecular analyses showed that right-sided tumors more frequently harbored TP53,APC,KRAS,and BRAF alterations,and identified a critical role of KRAS mutation in correlation with their survival differences.Higher pathogenic germline variants were identified in the right-sided tumors compared with left-sided tumors(29.3%vs.15.5%,P=0.03).Conclusions:We demonstrated that the prognostic impacts of tumor sidedness in CRLM is restricted patients with KRAS wild-type tumors.Tumor sidedness displays considerable clinical and molecular heterogeneity that may associate with their therapy benefits and prognosis.
基金This research was funded by the Key Program for International Science and Technology Cooperation Projects of China(No.2020YFE0201700)the Innovation Leading Talents Short-term Program of Jiangxi Province,China(No.1262000102)Shanghai Science and Technology Plan(No.21DZ2260400,China).
文摘Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity.However,no reliable method is currently available to assess its impact on delivery performance.In this study,a biomimetic nasal model based on three-dimensional(3D)reconstruction and three-dimensional printing(3DP)technology was developed for visualizing the deposition of drug powders in the nasal cavity.The results showed significant differences in cavity area and volume and powder distribution in the anterior part of the biomimetic nasal model of Chinese males and females.The nasal cavity model was modified with dimethicone and validated to be suitable for the deposition test.The experimental device produced the most satisfactory results with five spray times.Furthermore,particle sizes and spray angles were found to significantly affect the experimental device’s performance and alter drug distribution,respectively.Additionally,mometasone furoate(MF)nasal spray(NS)distribution patterns were investigated in a goat nasal cavity model and three male goat noses,confirming the in vitro and in vivo correlation.In conclusion,the developed human nasal structure biomimetic device has the potential to be a valuable tool for assessing nasal drug delivery system deposition and distribution.
基金supported by the Key Research and Development Program of Zhejiang Province(2020C05014 and 2020C01008)Ningbo Major Special Projects of the Plan“Science and Technology Innovation 2025”(2018B10085)。
文摘Advanced electromagnetic(EM)wave absorbers with wide bandwidth is crucial to avoid EM interference and radiation,while achieving compensatio nal attenuation at different frequencies is challe nging.Herein,two-dimensional(2 D)sandwiched FeNi@SnO_(2)have been designed,for which SnO_(2)nanosheets provide numerous heterogeneous nucleation sites for the growth of dispersive FeNi nanoparticles with reduced size.The SnO_(2)exhibits dipole polarization at 21.45 GHz with a width of~4.00 GHz,while the FeNi nanoparticles induce excha nge resonance at 18.13 GHz(~6.00 GHz width)and interfacial polarization at15.97 GHz(~6.00 GHz width).Such complementary attenuation mechanisms give rise to an impressive ultra-wide effective absorption bandwidth of 11.70 GHz with strong absorption of-49.1 dB at a small thickness of 1.75 mm.Not only superior EM wave absorption is achieved in this work,it also provides a versatile strategy to integrate different loss mechanisms in the design of EM wave absorbers with extra-wide bandwidth.
基金the financial support from the National Natural Science Foundation of China(62374033,and 62304039)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ129)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(GZB20240155)。
文摘Signal processing has entered the era of big data,and improving processing efficiency becomes crucial.Traditional computing architectures face computational efficiency limitations due to the separation of storage and computation.Array circuits based on multi-conductor devices enable full hardware convolutional neural networks(CNNs),which hold great potential to improve computational efficiency.However,when processing large-scale convolutional computations,there is still a significant amount of device redundancy,resulting in low computational power consumption and high computational costs.Here,we innovatively propose a memristor-based in-situ convolutional strategy,which uses the dynamic changes in the conductive wire,doping area,and polarization area of memristors as the process of convolutional operations,and uses the time required for conductance switching of a single device as the computation result,embodying convolutional computation through the unique spiked digital signal of the memristor.Our strategy reasonably encodes complex analog signals into simple digital signals through a memristor,completing the convolutional computation at the device level,which is essential for complex signal processing and computational efficiency improvement.Based on the implementation of device-level convolutional computing,we have achieved feature recognition and noise filtering for braille signals.We believe that our successful implementation of convolutional computing at the device level will promote the construction of complex CNNs with large-scale convolutional computing capabilities,bringing innovation and development to the field of neuromorphic computing.
基金financial support from the National Natural Science Foundation of China(62374033,62274118)Singapore National Research Foundation Investigator ship under Grant No NRF-NRFI08-2022-0009Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ129).
文摘Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data,which is crucial for advancing artificial intelligence.However,owing to the single physical node mapping characteristic of traditional memristor reservoir computing,it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks.Hence,this work firstly reports an artificial light-emitting synaptic(LES)device with dual photoelectric output for reservoir computing,and a reservoir system with mixed physical nodes is proposed.The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities,namely optical output with nonlinear optical effects and electrical output with memory characteristics.Unlike previously reported memristor-based reservoir systems,which pursue rich reservoir states in one physical dimension,our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices.The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22%in MNIST recognition.Furthermore,the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir,resulting in a recognition accuracy of 99.25%.The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.
文摘Electrolytic water is considered to be the first choice for large-scale industrial hydrogen production in the future due to its good matching with wind power,photovoltaic and other renewable energy power generation systems[1].In recent years,the emerging proton exchange membrane(PEM)water electrolysis for hydrogen production(Fig.1(a))has gradually become the mainstream development direction due to its advantages such as fast start and stop,high working current density(greater than 1 A.cm^(-2)),small size of electrolytic cell,and good matching with renewable electric energy.However,in acidic electrolytes,the ki-netics of oxygen evolution reaction(OER)half-reaction is very slow.In addition,the lower commercial value of anode O_(2)further reduces the economic benefits of traditional PEM technology.Therefore,from the perspective of reducing energy consumption and improving economic benefits,finding a more dynamic and/or thermodynamic OER alternative oxidation reaction has become the key to promote the practical appli-cation of hydrogen production by electrolytic water[2].