期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reference Image Guided Super-Resolution via Progressive Channel Attention Networks 被引量:2
1
作者 huan-jing yue Sheng Shen +2 位作者 jing-Yu Yang Hao-Feng Hu Yan-Fang Chen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第3期551-563,共13页
In recent years,the convolutional neural networks(CNNs)for single image super-resolution(SISR)are becoming more and more complex,and it is more challenging to improve the SISR performance.In contrast,the reference ima... In recent years,the convolutional neural networks(CNNs)for single image super-resolution(SISR)are becoming more and more complex,and it is more challenging to improve the SISR performance.In contrast,the reference image guided super-resolution(RefSR)is an effective strategy to boost the SR(super-resolution)performance.In RefSR,the introduced high-resolution(HR)references can facilitate the high-frequency residual prediction process.According to the best of our knowledge,the existing CNN-based RefSR methods treat the features from the references and the low-resolution(LR)input equally by simply concatenating them together.However,the HR references and the LR inputs contribute differently to the final SR results.Therefore,we propose a progressive channel attention network(PCANet)for RefSR.There are two technical contributions in this paper.First,we propose a novel channel attention module(CAM),which estimates the channel weighting parameter by weightedly averaging the spatial features instead of using global averaging.Second,considering that the residual prediction process can be improved when the LR input is enriched with more details,we perform super-resolution progressively,which can take advantage of the reference images in multi-scales.Extensive quantitative and qualitative evaluations on three benchmark datasets,which represent three typical scenarios for RefSR,demonstrate that our method is superior to the state-of-the-art SISR and RefSR methods in terms of PSNR(Peak Signal-to-Noise Ratio)and SSIM(Structural Similarity). 展开更多
关键词 reference-based super resolution channel attention progressive channel attention network(PCANet)
原文传递
微波消解/电感耦合等离子体质谱法测定注射用奈达铂中微量金属元素 被引量:3
2
作者 还传静 王思寰 李悦 《中国医院药学杂志》 CAS 北大核心 2018年第14期1492-1495,1499,共5页
目的:建立了微波消解结合电感耦合等离子体(ICP-MS)方法,采用内标法定量测定注射用奈达铂中的20种微量元素。方法:试样经逆王水-氢氟酸消解体系进行消解,并使用ICP-MS进行测定。选取4种同位素作为内标,选取丰度高和干扰因素少的同位素... 目的:建立了微波消解结合电感耦合等离子体(ICP-MS)方法,采用内标法定量测定注射用奈达铂中的20种微量元素。方法:试样经逆王水-氢氟酸消解体系进行消解,并使用ICP-MS进行测定。选取4种同位素作为内标,选取丰度高和干扰因素少的同位素进行测定,一定程度上避免了基体效应,并使测定结果更准确。结果:实验结果表明该方法所有元素的线性关系良好,相关系数r为0.995 4~1.0000;检出限为0.001 0~0.819 7 ng·mL^(-1);重复性和精密度的相对标准偏差(RSD)均小于4%;加样回收率为80%~117%。试样中各元素的含量均符合ICH Q3D与USP通则〈232〉的规定。结论:该方法灵敏度高,专属性与重复性好,分析速度快,为注射用奈达铂的质量控制提供了参考依据。 展开更多
关键词 奈达铂 电感耦合等离子体质谱 元素分析
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部