Assembly process documents record the designers'intention or knowledge.However,common knowl-edge extraction methods are not well suitable for assembly process documents,because of its tabular form and unstructured...Assembly process documents record the designers'intention or knowledge.However,common knowl-edge extraction methods are not well suitable for assembly process documents,because of its tabular form and unstructured natural language texts.In this paper,an assembly semantic entity recognition and relation con-struction method oriented to assembly process documents is proposed.First,the assembly process sentences are extracted from the table through concerned region recognition and cell division,and they will be stored as a key-value object file.Then,the semantic entities in the sentence are identified through the sequence tagging model based on the specific attention mechanism for assembly operation type.The syntactic rules are designed for realizing automatic construction of relation between entities.Finally,by using the self-constructed corpus,it is proved that the sequence tagging model in the proposed method performs better than the mainstream named entity recognition model when handling assembly process design language.The effectiveness of the proposed method is also analyzed through the simulation experiment in the small-scale real scene,compared with manual method.The results show that the proposed method can help designers accumulate knowledge automatically and efficiently.展开更多
Solar stills are considered an effective method to solve the scarcity of drinkable water.However,it is still missing a way to forecast its production.Herein,it is proposed that a convenient forecasting model which jus...Solar stills are considered an effective method to solve the scarcity of drinkable water.However,it is still missing a way to forecast its production.Herein,it is proposed that a convenient forecasting model which just needs to input the conventional weather forecasting data.The model is established by using machine learning methods of random forest and optimized by Bayesian algorithm.The required data to train the model are obtained from daily measurements lasting9 months.To validate the accuracy model,the determination coefficients of two types of solar stills are calculated as 0.935and 0.929,respectively,which are much higher than the value of both multiple linear regression(0.767)and the traditional models(0.829 and 0.847).Moreover,by applying the model,we predicted the freshwater production of four cities in China.The predicted production is approved to be reliable by a high value of correlation(0.868)between the predicted production and the solar insolation.With the help of the forecasting model,it would greatly promote the global application of solar stills.展开更多
文摘Assembly process documents record the designers'intention or knowledge.However,common knowl-edge extraction methods are not well suitable for assembly process documents,because of its tabular form and unstructured natural language texts.In this paper,an assembly semantic entity recognition and relation con-struction method oriented to assembly process documents is proposed.First,the assembly process sentences are extracted from the table through concerned region recognition and cell division,and they will be stored as a key-value object file.Then,the semantic entities in the sentence are identified through the sequence tagging model based on the specific attention mechanism for assembly operation type.The syntactic rules are designed for realizing automatic construction of relation between entities.Finally,by using the self-constructed corpus,it is proved that the sequence tagging model in the proposed method performs better than the mainstream named entity recognition model when handling assembly process design language.The effectiveness of the proposed method is also analyzed through the simulation experiment in the small-scale real scene,compared with manual method.The results show that the proposed method can help designers accumulate knowledge automatically and efficiently.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFE0127800)the Science,Technology&Innovation Funding Authority(STIFA),Egypt grant(Grant No.40517)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M682411)the Fundamental Research Funds for the Central Universities(Grant No.2019kfy RCPY045)。
文摘Solar stills are considered an effective method to solve the scarcity of drinkable water.However,it is still missing a way to forecast its production.Herein,it is proposed that a convenient forecasting model which just needs to input the conventional weather forecasting data.The model is established by using machine learning methods of random forest and optimized by Bayesian algorithm.The required data to train the model are obtained from daily measurements lasting9 months.To validate the accuracy model,the determination coefficients of two types of solar stills are calculated as 0.935and 0.929,respectively,which are much higher than the value of both multiple linear regression(0.767)and the traditional models(0.829 and 0.847).Moreover,by applying the model,we predicted the freshwater production of four cities in China.The predicted production is approved to be reliable by a high value of correlation(0.868)between the predicted production and the solar insolation.With the help of the forecasting model,it would greatly promote the global application of solar stills.