Alfalfa(Medicago sativa)is one of the most important forage crops in the world;however,its molecular genetics and breeding research are hindered due to the lack of a high-quality reference genome.Here,we report a de n...Alfalfa(Medicago sativa)is one of the most important forage crops in the world;however,its molecular genetics and breeding research are hindered due to the lack of a high-quality reference genome.Here,we report a de novo assembled 816-Mb high-quality,chromosome-level haploid genome sequence for‘Zhongmu No.1’alfalfa,a heterozygous autotetraploid.The contig N50 is 3.92 Mb,and 49165 genes are annotated in the genome.The alfalfa genome is estimated to have diverged from M.truncatula approximately 8 million years ago.Genomic population analysis of 162 alfalfa accessions revealed high genetic diversity,weak population structure,and extensive gene flow from wild to cultivated alfalfa.Genome-wide association studies identified many candidate genes associated with important agronomic traits.Furthermore,we showed that MsFTa2,a Flowering Locus T homolog,whose expression is upregulated in salt-resistant germplasms,may be associated with fall dormancy and salt resistance.Taken together,these genomic resources will facilitate alfalfa genetic research and agronomic improvement.展开更多
Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the...Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the recent advances of intelligent cancer nanomedicine, and discuss the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanomedicine including various imaging and therapeutic applications, as well as nanotoxicity. In particular, a few emerging strategies that have advanced cancer nanomedicine are also highlighted as the emerging focus such as tumor imprisonment, supramolecular chemotherapy, and DNA nanorobot. The challenge and outlook of some scientific and engineering issues are also discussed in future development. We wish to highlight these new progress of precise nanomedicine with the ultimate goal to inspire more successful explorations of intelligent nanoparticles for future clinical translations.展开更多
Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundament...Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (M000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (TOO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (-10-7 to 104 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.展开更多
In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The m...In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.展开更多
As China’s first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band(1-250 ke V) slat-collimator-based X-ray as...As China’s first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band(1-250 ke V) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 Me V. It was designed to perform pointing, scanning and gamma-ray burst(GRB)observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed.Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.展开更多
What effect does electric current do on dislocation evolution of metals keeps being a confusing question to be answered and proved. To this end, the dislocation evolution of a superalloy with electric current was dire...What effect does electric current do on dislocation evolution of metals keeps being a confusing question to be answered and proved. To this end, the dislocation evolution of a superalloy with electric current was directly observed by electrical in-situ transmission electron microscopy in this work. Dislocations annihilation at first and then regeneration was found for the first time, which directly proves the existence of electron force during the electrically-assisted manufacturing. Dislocations regeneration would be driven by the electron force and the resistance softening by the local Joule heating effect. Resultantly,a base could be provided for future electrically-assisted research.展开更多
Rates of photosynthesis, tolerance to photooxidative stress, and senescence are all important physiological factors that affect plant development and thus agricultural productivity. GRAS proteins play essential roles ...Rates of photosynthesis, tolerance to photooxidative stress, and senescence are all important physiological factors that affect plant development and thus agricultural productivity. GRAS proteins play essential roles in plant growth and development as well as in plant responses to biotic and abiotic stresses. So far few GRAS genes in wheat (Triticum aestivum L.) have been characterized. A previous transcriptome analysis indicated that the expression of a GRAS gene (TaSCL14) was induced by high-light stress in Xiaoyan 54 (XY54), a common wheat cultivar with strong tolerance to high-light stress. In this study, TaSCL14 gene was isolated from XY54 and mapped on chromosome 4A. TaSCL14 was expressed in various wheat organs, with high levels in stems and roots. Our results confirmed that TaSCL14 expression was indeed responsive to high-light stress. Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing (VIGS) of TaSCL14 in wheat was performed to help characterize its potential functions. Silencing of TaSCL14 resulted in inhibited plant growth, decreased photosynthetic capacity, and reduced tolerance to photooxidative stress. In addition, silencing of TaSCL14 in wheat promoted leaf senescence induced by darkness. These results suggest that TaSCL14 may act as a multifunctional regulator involved in plant growth, photosynthesis, tolerance to photooxidative stress, and senescence.展开更多
The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
基金supported by the National Key Research&Development Program of China(2019YFD1002701)Agricultural Variety Improvemnt Project of Shandong Province(2019LZGC010)the Project for Extramural Scientists of the State Key Laboratory for Agrobiotech no logy(2020SKLAB6-15,2011SKLAB01-1).
文摘Alfalfa(Medicago sativa)is one of the most important forage crops in the world;however,its molecular genetics and breeding research are hindered due to the lack of a high-quality reference genome.Here,we report a de novo assembled 816-Mb high-quality,chromosome-level haploid genome sequence for‘Zhongmu No.1’alfalfa,a heterozygous autotetraploid.The contig N50 is 3.92 Mb,and 49165 genes are annotated in the genome.The alfalfa genome is estimated to have diverged from M.truncatula approximately 8 million years ago.Genomic population analysis of 162 alfalfa accessions revealed high genetic diversity,weak population structure,and extensive gene flow from wild to cultivated alfalfa.Genome-wide association studies identified many candidate genes associated with important agronomic traits.Furthermore,we showed that MsFTa2,a Flowering Locus T homolog,whose expression is upregulated in salt-resistant germplasms,may be associated with fall dormancy and salt resistance.Taken together,these genomic resources will facilitate alfalfa genetic research and agronomic improvement.
基金supported by the National Natural Science Foundation of China (11621505, 11435002, 31671016)
文摘Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the recent advances of intelligent cancer nanomedicine, and discuss the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanomedicine including various imaging and therapeutic applications, as well as nanotoxicity. In particular, a few emerging strategies that have advanced cancer nanomedicine are also highlighted as the emerging focus such as tumor imprisonment, supramolecular chemotherapy, and DNA nanorobot. The challenge and outlook of some scientific and engineering issues are also discussed in future development. We wish to highlight these new progress of precise nanomedicine with the ultimate goal to inspire more successful explorations of intelligent nanoparticles for future clinical translations.
基金supported by the National Program on Key Research and Development Project(Grant No.2016YFA0400800)from the Ministry of Science and Technology of China(MOST)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23040400)the Hundred Talent Program of Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant Nos.11233001,11503027,11403026,11473027,and11733009)
文摘Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (M000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (TOO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (-10-7 to 104 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
基金support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)support by ASI, under the dedicated eXTP agreements and agreement ASI-INAF (Grant No. 2017-14-H.O.)+3 种基金by INAF and INFN under project REDSOXsupport from the Deutsche Zentrum für Luft- und Raumfahrt, the German Aerospce Center (DLR)support of Science Centre (Grant No. 2013/10/M/ST9/00729)support from MINECO (Grant No. ESP2017-82674-R) and FEDER funds
文摘In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.
基金project funded by China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)support from the National Key Research and Development Program of China(Grant No.2016YFA0400800)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA04010202,XDA04010300,and XDB23040400)the National Natural Science Foundation of China(Grant Nos.U1838201,and U1838102).
文摘As China’s first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band(1-250 ke V) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 Me V. It was designed to perform pointing, scanning and gamma-ray burst(GRB)observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed.Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.
基金financially supported by the National Natural Science Foundation of China(Nos.U1737212 and U1637102)the Natural Science Foundation for Distinguished Young Scholars of Shaanxi Province(No.2019JC-09)。
文摘What effect does electric current do on dislocation evolution of metals keeps being a confusing question to be answered and proved. To this end, the dislocation evolution of a superalloy with electric current was directly observed by electrical in-situ transmission electron microscopy in this work. Dislocations annihilation at first and then regeneration was found for the first time, which directly proves the existence of electron force during the electrically-assisted manufacturing. Dislocations regeneration would be driven by the electron force and the resistance softening by the local Joule heating effect. Resultantly,a base could be provided for future electrically-assisted research.
基金financially supported by the National Natural Science Foundation of China(No.31371609)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA08010403)the National Key Basic Research Program(No.2009CB118506)
文摘Rates of photosynthesis, tolerance to photooxidative stress, and senescence are all important physiological factors that affect plant development and thus agricultural productivity. GRAS proteins play essential roles in plant growth and development as well as in plant responses to biotic and abiotic stresses. So far few GRAS genes in wheat (Triticum aestivum L.) have been characterized. A previous transcriptome analysis indicated that the expression of a GRAS gene (TaSCL14) was induced by high-light stress in Xiaoyan 54 (XY54), a common wheat cultivar with strong tolerance to high-light stress. In this study, TaSCL14 gene was isolated from XY54 and mapped on chromosome 4A. TaSCL14 was expressed in various wheat organs, with high levels in stems and roots. Our results confirmed that TaSCL14 expression was indeed responsive to high-light stress. Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing (VIGS) of TaSCL14 in wheat was performed to help characterize its potential functions. Silencing of TaSCL14 resulted in inhibited plant growth, decreased photosynthetic capacity, and reduced tolerance to photooxidative stress. In addition, silencing of TaSCL14 in wheat promoted leaf senescence induced by darkness. These results suggest that TaSCL14 may act as a multifunctional regulator involved in plant growth, photosynthesis, tolerance to photooxidative stress, and senescence.
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.