目的为我国短缺药品监管提供参考。方法检索中国知网、万方、维普及Web of Science数据库,获取国内外短缺药品研究现状相关文献,导入CiteSpace 6.2软件进行可视化,分析并比较国内、国外短缺药品监管研究现状及发展动态。结果共获得文献3...目的为我国短缺药品监管提供参考。方法检索中国知网、万方、维普及Web of Science数据库,获取国内外短缺药品研究现状相关文献,导入CiteSpace 6.2软件进行可视化,分析并比较国内、国外短缺药品监管研究现状及发展动态。结果共获得文献3081篇,其中国内文献553篇、英文文献2528篇,发文量分别以2019年至2020年和2020年至2022年较高,国内文献数量增长趋势较明显。国内以方宇、杨世民、杨才军等为核心作者,以中国药科大学为最高产机构(21篇);国外作者发文量以FOX和ATALA最多(均为11篇),国外机构发文量以Massachusetts Gen Hosp与Harvard Med Sch最多(均为36篇);国内、国外作者和研究机构合作网络均较分散,研究机构以高校和研究所为主。国内相关研究形成了短缺药品、药品短缺、供应保障等关键词聚类,国外相关研究形成了regenerative medicine,tissue engineering,machine learning等关键词聚类。短缺药品的供应保障是目前该领域的研究重点。结论当前国内短缺药品相关研究势头良好,应进一步结合我国国情,借鉴国外短缺药品监管方法,重视定量分析,运用经济学理论提出更完善的应对策略,切实解决我国的药品短缺问题。展开更多
Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient conditions.Although a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared wi...Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient conditions.Although a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared with the nitrogen reduction reaction(NRR),the NH_(3) production rate of NO_(3)−RR is still well below the industrial Haber-Bosch route due to the lack of robust electrocatalysts for yielding high current densitieswith concurrently good suppression of hydrogen evolution reaction(HER).Herein,we describe an in situ electrochemical strategy for the synthesis of hollow carbon-coated Cu nanoparticles(NPs)(HSCu@C)with abundant grain boundaries(HSCu-AGB@C)for highly efficient NO_(3)−RR in both alkaline and neutral media.Impressively,in alkaline media,the HSCu-AGB@C can achieve a maximum NH3 Faradaic efficiency of 94.2% with an ultrahigh NH_(3) rate of 487.8 mmol g^(−1) cat h^(−1) at−0.2 V versus a reversible hydrogen electrode,more than 2.4-fold of the rate obtained in the Haber-Bosch.Both theoretic computations and experimental results uncover that the grain boundaries play the key to improve the NO_(3)−RR performance.Herein,the industrial-scale NH_(3) production ratemay open exciting opportunities for the practical electrosynthesis NH_(3) under ambient conditions.展开更多
文摘目的为我国短缺药品监管提供参考。方法检索中国知网、万方、维普及Web of Science数据库,获取国内外短缺药品研究现状相关文献,导入CiteSpace 6.2软件进行可视化,分析并比较国内、国外短缺药品监管研究现状及发展动态。结果共获得文献3081篇,其中国内文献553篇、英文文献2528篇,发文量分别以2019年至2020年和2020年至2022年较高,国内文献数量增长趋势较明显。国内以方宇、杨世民、杨才军等为核心作者,以中国药科大学为最高产机构(21篇);国外作者发文量以FOX和ATALA最多(均为11篇),国外机构发文量以Massachusetts Gen Hosp与Harvard Med Sch最多(均为36篇);国内、国外作者和研究机构合作网络均较分散,研究机构以高校和研究所为主。国内相关研究形成了短缺药品、药品短缺、供应保障等关键词聚类,国外相关研究形成了regenerative medicine,tissue engineering,machine learning等关键词聚类。短缺药品的供应保障是目前该领域的研究重点。结论当前国内短缺药品相关研究势头良好,应进一步结合我国国情,借鉴国外短缺药品监管方法,重视定量分析,运用经济学理论提出更完善的应对策略,切实解决我国的药品短缺问题。
基金the National Natural Science Foundation(NNSF)of China(nos.21975162 and 51902208)Shenzhen Government’s Plan of Science and Technology(nos.JCYJ20200109105803806 and JCYJ20190808142219049).
文摘Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient conditions.Although a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared with the nitrogen reduction reaction(NRR),the NH_(3) production rate of NO_(3)−RR is still well below the industrial Haber-Bosch route due to the lack of robust electrocatalysts for yielding high current densitieswith concurrently good suppression of hydrogen evolution reaction(HER).Herein,we describe an in situ electrochemical strategy for the synthesis of hollow carbon-coated Cu nanoparticles(NPs)(HSCu@C)with abundant grain boundaries(HSCu-AGB@C)for highly efficient NO_(3)−RR in both alkaline and neutral media.Impressively,in alkaline media,the HSCu-AGB@C can achieve a maximum NH3 Faradaic efficiency of 94.2% with an ultrahigh NH_(3) rate of 487.8 mmol g^(−1) cat h^(−1) at−0.2 V versus a reversible hydrogen electrode,more than 2.4-fold of the rate obtained in the Haber-Bosch.Both theoretic computations and experimental results uncover that the grain boundaries play the key to improve the NO_(3)−RR performance.Herein,the industrial-scale NH_(3) production ratemay open exciting opportunities for the practical electrosynthesis NH_(3) under ambient conditions.