We present an exercise that intends to establish a relationship between the strength of nebular emission lines and optical stellar features in the spectrum of a galaxy. After accurately subtracting the stellar continu...We present an exercise that intends to establish a relationship between the strength of nebular emission lines and optical stellar features in the spectrum of a galaxy. After accurately subtracting the stellar continuum and the underlying stellar absorption, we made reliable measurements of the emission lines of all the galaxies in the Sloan Digital Sky Survey Data Release 2 (SDSS DR2). More than 4000 star-forming galaxies with high S/N ratio of both the stellar spectrum and the emission lines are selected. These galaxy spectra are fitted with the 10 PCs of Yip et al., after all the emission line regions have been filtered out. We find that the flux of hydrogen Balmer emission lines, Ha and Hβ can be well recovered from the PCs, while the metal lines are not well reproduced. The fluxes of Ha and Hβ measured from the PC-reconstructed spectra and from the observed spectra agree well with an rms scatter of only - 0.1 dex. This result suggests that, with moderate spectral resolution and S/N ratio, the optical stellar spectrum of a galaxy can serve as an indicator of star formation rate.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘We present an exercise that intends to establish a relationship between the strength of nebular emission lines and optical stellar features in the spectrum of a galaxy. After accurately subtracting the stellar continuum and the underlying stellar absorption, we made reliable measurements of the emission lines of all the galaxies in the Sloan Digital Sky Survey Data Release 2 (SDSS DR2). More than 4000 star-forming galaxies with high S/N ratio of both the stellar spectrum and the emission lines are selected. These galaxy spectra are fitted with the 10 PCs of Yip et al., after all the emission line regions have been filtered out. We find that the flux of hydrogen Balmer emission lines, Ha and Hβ can be well recovered from the PCs, while the metal lines are not well reproduced. The fluxes of Ha and Hβ measured from the PC-reconstructed spectra and from the observed spectra agree well with an rms scatter of only - 0.1 dex. This result suggests that, with moderate spectral resolution and S/N ratio, the optical stellar spectrum of a galaxy can serve as an indicator of star formation rate.