A bi-phasic scaffold consisting of a columnar formaldehyde-acetalized polyvinyl alcohol (PVF) sponge and a cylindrical porous hydroxyapatite (HA) with a hollow center was devised. Rat bone marrow cells (rBMCs) were se...A bi-phasic scaffold consisting of a columnar formaldehyde-acetalized polyvinyl alcohol (PVF) sponge and a cylindrical porous hydroxyapatite (HA) with a hollow center was devised. Rat bone marrow cells (rBMCs) were seeded into the sponge placed in the hollow center of the cylindrical porous HA. The bi-phasic scaffold, a cylindrical porous HA and a PVF sponge separated from a bi-phasic scaffold after rBMC seeding, and a PVF sponge without rBMCs as a negative control, were implanted for 6 weeks into rat dorsal subcutaneous tissue. In each construct, bone formation was examined histologically and osteocalcin was measured immunochemically. Bone formation was observed in the bi-phasic scaffold and also in the cylindrical porous HA isolated from the bi-phasic scaffold. A significant difference in the quantity of osteocalcin was observed between the bi-phasic scaffold and the isolated cylindrical porous HA. No bone formation was found in the isolated PVF sponge. The bi-phasic scaffold as an outer layer of the scaffold seemed to inhibit the outflow of rBMCs from the PVF sponge. This type of bi-phasic scaffold may have two specific characteristics: Attachment of cells both in PVF sponge and cylindrical porous HA.展开更多
文摘A bi-phasic scaffold consisting of a columnar formaldehyde-acetalized polyvinyl alcohol (PVF) sponge and a cylindrical porous hydroxyapatite (HA) with a hollow center was devised. Rat bone marrow cells (rBMCs) were seeded into the sponge placed in the hollow center of the cylindrical porous HA. The bi-phasic scaffold, a cylindrical porous HA and a PVF sponge separated from a bi-phasic scaffold after rBMC seeding, and a PVF sponge without rBMCs as a negative control, were implanted for 6 weeks into rat dorsal subcutaneous tissue. In each construct, bone formation was examined histologically and osteocalcin was measured immunochemically. Bone formation was observed in the bi-phasic scaffold and also in the cylindrical porous HA isolated from the bi-phasic scaffold. A significant difference in the quantity of osteocalcin was observed between the bi-phasic scaffold and the isolated cylindrical porous HA. No bone formation was found in the isolated PVF sponge. The bi-phasic scaffold as an outer layer of the scaffold seemed to inhibit the outflow of rBMCs from the PVF sponge. This type of bi-phasic scaffold may have two specific characteristics: Attachment of cells both in PVF sponge and cylindrical porous HA.