Background Recent recognition is that Th2 response is insufficient to fully explain the aetiology of asthma. Other CD4^+ T cells subsets might play a role in asthma. We investigated the relative abundance and activit...Background Recent recognition is that Th2 response is insufficient to fully explain the aetiology of asthma. Other CD4^+ T cells subsets might play a role in asthma. We investigated the relative abundance and activities of Thl, Th2, Th17 and CD4^+CD25^+ Treg cells in patients with allergic asthma. Methods Twenty-two patients with mild asthma, 17 patients with moderate to severe asthma and 20 healthy donors were enrolled. All patients were allergic to house dust mites. Plasma total IgE, pulmonary function and Asthma Control Questionnaire were assessed. The proportions of peripheral blood Thl, Th2, Th17 and CD4^+CD25^+ Treg cells were determined by flow cytometry. The expression of cytokines in plasma and Jn the culture supernatant of peripheral blood mononuclear cells was determined by enzyme linked, immunosorbent assay. Results The frequency of blood Th2 cells and IL-4 levels in plasma and culture supernatant of peripheral blood mononuclear cells were increased in all patients with allergic asthma. The frequency of Th17 cells and the plasma and culture supernatant levels of IL-17 were increased, whereas the frequency of CD4^+CD25^+ Treg cells and plasma IL-10 levels were decreased in patients with moderate to severe asthma. Dermatophagoides pteronyssinus specific IgE levels were positively correlated with the percentage of blood Th2 cells and plasma IL-4 levels. Forced expiratory volume in the first second was negatively correlated with the frequency of Th17 cells and plasma IL-17 levels, and positively correlated with the frequency of Treg cells. However, mean Asthma Control Questionnaire scores were positively correlated with the frequency of Th17 cells and plasma IL-17 levels, and negatively correlated with the frequency of Treg cells. Conclusions Imbalances in Thl/Th2 and Th17/Treg were found in patients with allergic asthma. Furthermore, elevated Th17 cell responses, the absence of Tregs and an imbalance in Th17/Treg levels were associated with moderate to severe asthma.展开更多
Ulcerative colitis(UC)manifests as an etiologically complicated and relapsing gastrointestinal disease.The enteric nervous system(ENS)plays a pivotal role in rectifying and orchestrating the inflammatory responses in ...Ulcerative colitis(UC)manifests as an etiologically complicated and relapsing gastrointestinal disease.The enteric nervous system(ENS)plays a pivotal role in rectifying and orchestrating the inflammatory responses in gut tract.Berberine,an isoquinoline alkaloid,is known as its antiinflammatory and therapeutic effects in experimental colitis.However,little research focused on its regulatory function on ENS.Therefore,we set out to explore the pathological role of neurogenic inflammation in UC and the modulating effects of berberine on neuro-immune interactions.Functional defects of enteric glial cells(EGCs),with decreased glial fibrillary acidic protein(GFAP)and increased substance P expression,were observed in DSS-induced murine UC.Administration of berberine can obviously ameliorate the disease severity and restore the mucosal barrier homeostasis of UC,closely accompanying by maintaining the residence of EGCs and attenuating inflammatory infiltrations and immune cells overactivation.In vitro,berberine showed direct protective effects on monoculture of EGCs,bone marrowderived dendritic cells(BMDCs),T cells,and intestinal epithelial cells(IECs)in the simulated inflammatory conditions.Furthermore,berberine could modulate gut EGCs-IECs-immune cell interactions in the co-culture systems.In summary,our study indicated the EGCs-IECs-immune cell interactions might function as a crucial paradigm in mucosal inflammation and provided an infusive mechanism of berberine in regulating enteric neurogenic inflammation.展开更多
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effecti...The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effective aperture of 3.6 m–4.9 m) and a wide field of view (FOV) (5°). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror’s surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67m×6.05 m) and active Schmidt mirror (5.74m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.展开更多
Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivi...Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivity and better thermal stability than yttria-stabilized zirconia(YSZ).However,the low Vickers hardness and toughness are the main shortcomings of RE;TaO-and REjNbOr that limit their applications as TBC materials.To increase the hardness,high entropy(Yu3Ybu3Er/3)sTaOr,(Y13YbnErns)NbO,and(Sm1/6Eu1/6Y 1/6Yb1/6Lu1/6Er1/6)3(Nb1/2Ta1/2)O7 are designed and synthesized in this study.These high entropy ceramics exhibit high Vickers hardness(10.912.0 GPa),close thermal expansion coefficients to that of single-principal-component RE3TaO,and RE;NbO,(7.9×10^-6-10.8×10-6 C-1 at room temperature),good phase stability,and good chemical compatibility with thermally grown Al2O3,which make them promising for applications as candidate TBC materials.展开更多
The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) general survey is a spectroscopic survey that will eventually cover approximately half of the celestial sphere and collect 10 million spectra of ...The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) general survey is a spectroscopic survey that will eventually cover approximately half of the celestial sphere and collect 10 million spectra of stars, galaxies and QSOs. Objects in both the pilot survey and the first year regular survey are included in the LAMOST DR1. The pilot survey started in October 2011 and ended in June 2012, and the data have been released to the public as the LAMOST Pilot Data Release in August 2012. The regular survey started in September 2012, and completed its first year of operation in June 2013. The LAMOST DR1 includes a total of 1202 plates containing 2 955 336 spectra, of which 1 790 879 spectra have observed signalto-noise ratio(SNR) ≥ 10. All data with SNR ≥ 2 are formally released as LAMOST DR1 under the LAMOST data policy. This data release contains a total of 2 204 696 spectra, of which 1 944 329 are stellar spectra, 12 082 are galaxy spectra and 5017 are quasars. The DR1 not only includes spectra, but also three stellar catalogs with measured parameters: late A,FGK-type stars with high quality spectra(1 061 918 entries), A-type stars(100 073 entries), and M-type stars(121 522 entries). This paper introduces the survey design, the observational and instrumental limitations, data reduction and analysis, and some caveats. A description of the FITS structure of spectral files and parameter catalogs is also provided.展开更多
Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densificat...Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densification of porous structure at high temperatures.In order to overcome these obstacles,herein,porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C was prepared by a simple method combing in-situ reaction and partial sintering.Porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C possesses homogeneous microstructure with grain size in the range of 100–500 nm and pore size in the range of 0.2–1μm,which exhibits high porosity of 80.99%,high compressive strength of 3.45 MPa,low room temperature thermal conductivity of 0.39 W·m^-1K^-1,low thermal diffusivity of 0.74 mm^2·s^-1and good high temperature stability.The combination of these properties renders porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))Cpromising as light-weight ultrahigh temperature thermal insulation materials.展开更多
Background Human umbilical cord blood contains an abundance of immature stem/progenitor cells, which may participate in the repair of hearts that have been damaged by myocardial infarction (MI). This study aimed to ...Background Human umbilical cord blood contains an abundance of immature stem/progenitor cells, which may participate in the repair of hearts that have been damaged by myocardial infarction (MI). This study aimed to evaluate the effects of human umbilical cord blood mononuclear cells (hUCBC) transplantation on cardiac function and left ventricular remodeling in rat model of MI. Methods Forty-five male Wistar rats were randomized into three groups: MI or control group (n=15), MI plus cell transplantation (n=15), and sham group (n=15). Acute myocardial infarction (AMI) was established by ligating the left anterior descending artery, thereafter, hUCBC were implanted into the marginal area of infarcted myocardium. In MI/control group, DMEM was injected instead of hUCBC following the same protocol. Left ventricular function assessment was carded out by echocardiography and invasive hemodynamic measurements one month post MI. All rats were sacrificed for histological and immunochemical examinations.Results The transplanted hUCBC survived and engaged in the process of myocardial repair in the host heart. Echocardiography demonstrated that left ventricular function improved significantly in the rats that underwent cell transplantation. Hemodynamic studies found a significantly decreased left ventricular end-diastolic pressure (LVEDP) [(21.08±8.10) mmHg vs (30.82±9.59) mmHg, P〈0.05], increase in +dp/dtmax [(4.29± 1.27) mmHg/ms vs (3.24±0.75) mmHg/ms, P〈0.05), and increase in -dp/dtmax [(3.71 ±0.79) mmHg/ms vs (3.00± 0.49) mmHg/ms, P〈0.05] among MI group with hUCBC transplantation when compared with MI/control group. Masson's trichrome staining revealed that the collagen density in the left ventricle was significantly lower in rats of transplantation group than that in the MI control groups [(6.33±2.69)% vs (11.10±3.75)%, P〈 0.01]. Based on immunostaining of α-actin, the numbers of microvessels were significantly (P〈0.01) increased at展开更多
Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and h...Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and high thermal conductivity.In order to overcome these obstacles,herein,a new high entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic was designed,and then powders and bulk were prepared through solid-state reaction method and spark plasma sintering(SPS),respectively.The thermal expansion coefficient of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 is(8.54±0.29)×10^-6 K^-1 at 673 K–1273 K,which is about 9%higher than that of Yb3Al5O12.The thermal conductivity of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic is 3.81 W·m^-1 K^-1 at 300 K,which is about 18%lower than that of Yb3Al5O12.Moreover,there is no reaction between HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 and thermally grown(TG)Al2O3 even at 1600℃.After annealing at 1590℃for 18 h,the average grain size of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 increases only from 1.56μm to 2.27μm.Close thermal expansion coefficient to TG Al2O3,low thermal conductivity,good phase stability,excellent chemical compatibility with TG Al2O3 and slow grain growth rate make HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 promising for thermal barrier applications.展开更多
Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxi...Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxidizing-free capacity[1–3].Nevertheless,grain growth,sintering and creep deformation at high operation temperatures are still serious problems for Al2O3f/Al2O3 ceramic matrix composites,which can lead to a reduction in the strength and damage tolerance[2].Moreover,Al2O3 can be corroded by the high temperature water vapor in combustion environments and yields volatile products,such as Al(OH)3[4].Consequently,environmental barrier coatings(EBCs)are necessary for Al2O3f/Al2O3 ceramic matrix composites,which can protect Al2O3f/Al2O3 CMC from high temperature and flowing combustion gas corrosion and thus increase the high temperature capability and the service life of components.展开更多
Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity a...Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating.展开更多
A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid so...A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid solution is formed with homogeneous distribution of rare-earth elements.HE(Yb0.25Y0.25Lu0.255 Er0.252 SiO5 exhibits excellent phase stability and anisotropy in thermal expansion.The coefficients of thermal expansion(CTEs) in three crystallographic directions are:αa=(2.57±0.07)×10^-6 K^-1,αb=(8.07±0.13)×10^-6 K^-1,αc=(9.98±0.10)×10^-6 K^-1.The strong anisotropy in thermal expansion is favorable in minimizing the coating/substrate mismatch if preferred orientation of HE(Yb0.25Y0.25Lu0.25Er0.252 SiO5 is controlled on either metal or ceramic substrate.展开更多
Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. I...Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.展开更多
Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current e...Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current experiments. Treatments are total essential amino acid (TEAA), His-removal, Lys-removal, Met-removal, and branch chain amino acid (BCAA)- removal. Results indicated that, pH-value ranged between 5.9 and 6.8, with the highest mean value for the group with BCAA-removal (6.54) in the culture. Concentration of NH3-N ranged between 10.99 to 30.51 mg 100 mL^-1, with the group of TEAA recording the highest average NH3-N concentration (17.85 mg 100 mL^-1). Yields of microbial protein and limiting degree on microbial growth varied with treatments (P 〈 0.01), and the lowest accrued in treatment with BCAA-removal (0.1389, 0.1772, and 0.3161 mg mL^-1 for bacteria, protozoa, and mixed microbes, respectively), compared to the group with TEAA, microbial production of mixed microbes decreased by 44.52%. As for micro-flora, protozoa to bacteria ratio was the lowest for the group with Lys-removal (89.12%), while the highest for the group with BCAA-removal (127.60%) (P 〈 0.01). Furthermore, PCR-SSCP analysis revealed that, microbial profile subjected to substrates within bacteria and protozoa groups. It was therefore concluded that, dietary amino acid influenced both rumen fermentation and microbial characteristics.展开更多
Electromagnetic wave(EMW)absorbing materials play a vital role in modern communication and information processing technologies to inhibit information leakage and prevent possible damages to environment and human bodie...Electromagnetic wave(EMW)absorbing materials play a vital role in modern communication and information processing technologies to inhibit information leakage and prevent possible damages to environment and human bodies.Currently,most of EMW absorbing materials are either composites of two or more phases or in the form of nanosheets,nanowires or nanofibers in order to enhance the EMW absorption performance through dielectric loss,magnetic loss and dielectric/magnetic loss coupling.However,the combination of complex shapes/multi phases and nanosizes may compound the difficulties of materials processing,composition and interfaces control as well as performance maintenance during service.Thus,searching for single phase materials with good stability and superior EMW absorbing properties is appealing.To achieve this goal,the EMW absorbing properties of transition metal carbides TMCs(TM=Ti,Zr,Hf,Nb and Ta)and high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C which belong to ultrahigh temperature ceramics,were investigated in this work.Due to the good electrical conductivity and splitting of d orbitals into lower energy t2glevel and higher energy eglevel in TMC6octahedral arrangement,TMCs(TM=Ti,Zr,Hf,Nb and Ta)exhibit good EMW absorbing properties.Especially,Hf C and Ta C exhibit superior EMW absorbing properties.The minimum reflection loss(RLmin)value of Hf C is-55.8 d B at 6.0 GHz with the thickness of 3.8 mm and the effective absorption bandwidth(E_(AB))is 6.0 GHz from 12.0 to 18.0 GHz at thickness of 1.9 mm;the RL_(minvalue)of Ta C reaches-41.1 d B at 16.2 GHz with a thickness of 2.0 mm and the EABis 6.1 GHz with a thickness of 2.2 mm.Intriguingly,the electromagnetic parameters,i.e.,complex permittivity and permeability are tunable by forming single phase solid solution or high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.The R_(Lminvalue)of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C is-38.5 d B at 9.5 GHz with the thickness of 1.9 mm,and the EABis 2.3 GHz(from 11.3 to 13.6 GHz)at thickness o展开更多
Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applica...Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials.展开更多
Benign prostatic hyperplasia (BPH) is highly prevalent among older men, impacting on their quality of life, sexual function, and genitourinary health, and has become an important global burden of disease. Transurethra...Benign prostatic hyperplasia (BPH) is highly prevalent among older men, impacting on their quality of life, sexual function, and genitourinary health, and has become an important global burden of disease. Transurethral plasmakinetic resection of prostate (TUPKP) is one of the foremost surgical procedures for the treatment of BPH. It has become well established in clinical practice with good efficacy and safety. In 2018, we issued the guideline “2018 Standard Edition”. However much new direct evidence has now emerged and this may change some of previous recommendations. The time is ripe to develop new evidence-based guidelines, so we formed a working group of clinical experts and methodologists. The steering group members posed 31 questions relevant to the management of TUPKP for BPH covering the following areas: questions relevant to the perioperative period (preoperative, intraoperative, and postoperative) of TUPKP in the treatment of BPH, postoperative complications and the level of surgeons’ surgical skill. We searched the literature for direct evidence on the management of TUPKP for BPH, and assessed its certainty generated recommendations using the grade criteria by the European Association of Urology. Recommendations were either strong or weak, or in the form of an ungraded consensus-based statement. Finally, we issued 36 statements. Among them, 23 carried strong recommendations, and 13 carried weak recommendations for the stated procedure. They covered questions relevant to the aforementioned three areas. The preoperative period for TUPKP in the treatment of BPH included indications and contraindications for TUPKP, precautions for preoperative preparation in patients with renal impairment and urinary tract infection due to urinary retention, and preoperative prophylactic use of antibiotics. Questions relevant to the intraoperative period incorporated surgical operation techniques and prevention and management of bladder explosion. The application to different populations incorporating the efficacy an展开更多
文摘Background Recent recognition is that Th2 response is insufficient to fully explain the aetiology of asthma. Other CD4^+ T cells subsets might play a role in asthma. We investigated the relative abundance and activities of Thl, Th2, Th17 and CD4^+CD25^+ Treg cells in patients with allergic asthma. Methods Twenty-two patients with mild asthma, 17 patients with moderate to severe asthma and 20 healthy donors were enrolled. All patients were allergic to house dust mites. Plasma total IgE, pulmonary function and Asthma Control Questionnaire were assessed. The proportions of peripheral blood Thl, Th2, Th17 and CD4^+CD25^+ Treg cells were determined by flow cytometry. The expression of cytokines in plasma and Jn the culture supernatant of peripheral blood mononuclear cells was determined by enzyme linked, immunosorbent assay. Results The frequency of blood Th2 cells and IL-4 levels in plasma and culture supernatant of peripheral blood mononuclear cells were increased in all patients with allergic asthma. The frequency of Th17 cells and the plasma and culture supernatant levels of IL-17 were increased, whereas the frequency of CD4^+CD25^+ Treg cells and plasma IL-10 levels were decreased in patients with moderate to severe asthma. Dermatophagoides pteronyssinus specific IgE levels were positively correlated with the percentage of blood Th2 cells and plasma IL-4 levels. Forced expiratory volume in the first second was negatively correlated with the frequency of Th17 cells and plasma IL-17 levels, and positively correlated with the frequency of Treg cells. However, mean Asthma Control Questionnaire scores were positively correlated with the frequency of Th17 cells and plasma IL-17 levels, and negatively correlated with the frequency of Treg cells. Conclusions Imbalances in Thl/Th2 and Th17/Treg were found in patients with allergic asthma. Furthermore, elevated Th17 cell responses, the absence of Tregs and an imbalance in Th17/Treg levels were associated with moderate to severe asthma.
基金supported by Science and Technology Commission of Shanghai Municipality,China(No.18431907100)technical assistance from the Platform of Molecular Imaging and Research,SIMM,CAS,Beijing,China.
文摘Ulcerative colitis(UC)manifests as an etiologically complicated and relapsing gastrointestinal disease.The enteric nervous system(ENS)plays a pivotal role in rectifying and orchestrating the inflammatory responses in gut tract.Berberine,an isoquinoline alkaloid,is known as its antiinflammatory and therapeutic effects in experimental colitis.However,little research focused on its regulatory function on ENS.Therefore,we set out to explore the pathological role of neurogenic inflammation in UC and the modulating effects of berberine on neuro-immune interactions.Functional defects of enteric glial cells(EGCs),with decreased glial fibrillary acidic protein(GFAP)and increased substance P expression,were observed in DSS-induced murine UC.Administration of berberine can obviously ameliorate the disease severity and restore the mucosal barrier homeostasis of UC,closely accompanying by maintaining the residence of EGCs and attenuating inflammatory infiltrations and immune cells overactivation.In vitro,berberine showed direct protective effects on monoculture of EGCs,bone marrowderived dendritic cells(BMDCs),T cells,and intestinal epithelial cells(IECs)in the simulated inflammatory conditions.Furthermore,berberine could modulate gut EGCs-IECs-immune cell interactions in the co-culture systems.In summary,our study indicated the EGCs-IECs-immune cell interactions might function as a crucial paradigm in mucosal inflammation and provided an infusive mechanism of berberine in regulating enteric neurogenic inflammation.
文摘The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effective aperture of 3.6 m–4.9 m) and a wide field of view (FOV) (5°). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror’s surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67m×6.05 m) and active Schmidt mirror (5.74m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089).
文摘Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivity and better thermal stability than yttria-stabilized zirconia(YSZ).However,the low Vickers hardness and toughness are the main shortcomings of RE;TaO-and REjNbOr that limit their applications as TBC materials.To increase the hardness,high entropy(Yu3Ybu3Er/3)sTaOr,(Y13YbnErns)NbO,and(Sm1/6Eu1/6Y 1/6Yb1/6Lu1/6Er1/6)3(Nb1/2Ta1/2)O7 are designed and synthesized in this study.These high entropy ceramics exhibit high Vickers hardness(10.912.0 GPa),close thermal expansion coefficients to that of single-principal-component RE3TaO,and RE;NbO,(7.9×10^-6-10.8×10-6 C-1 at room temperature),good phase stability,and good chemical compatibility with thermally grown Al2O3,which make them promising for applications as candidate TBC materials.
基金funded by the National Basic Research Program of China (973 Program, 2014CB845700)the National Natural Science Foundation of China (Grant Nos. 11390371)Funding for the project has been provided by the National Development and Reform Commission
文摘The Large sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) general survey is a spectroscopic survey that will eventually cover approximately half of the celestial sphere and collect 10 million spectra of stars, galaxies and QSOs. Objects in both the pilot survey and the first year regular survey are included in the LAMOST DR1. The pilot survey started in October 2011 and ended in June 2012, and the data have been released to the public as the LAMOST Pilot Data Release in August 2012. The regular survey started in September 2012, and completed its first year of operation in June 2013. The LAMOST DR1 includes a total of 1202 plates containing 2 955 336 spectra, of which 1 790 879 spectra have observed signalto-noise ratio(SNR) ≥ 10. All data with SNR ≥ 2 are formally released as LAMOST DR1 under the LAMOST data policy. This data release contains a total of 2 204 696 spectra, of which 1 944 329 are stellar spectra, 12 082 are galaxy spectra and 5017 are quasars. The DR1 not only includes spectra, but also three stellar catalogs with measured parameters: late A,FGK-type stars with high quality spectra(1 061 918 entries), A-type stars(100 073 entries), and M-type stars(121 522 entries). This paper introduces the survey design, the observational and instrumental limitations, data reduction and analysis, and some caveats. A description of the FITS structure of spectral files and parameter catalogs is also provided.
基金supported by the National Natural Science Foundation of China under Grant Nos. U1435206 and 51672064Beijing Municipal Science & Technology Commission under Grant No. D161100002416001
文摘Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densification of porous structure at high temperatures.In order to overcome these obstacles,herein,porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C was prepared by a simple method combing in-situ reaction and partial sintering.Porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C possesses homogeneous microstructure with grain size in the range of 100–500 nm and pore size in the range of 0.2–1μm,which exhibits high porosity of 80.99%,high compressive strength of 3.45 MPa,low room temperature thermal conductivity of 0.39 W·m^-1K^-1,low thermal diffusivity of 0.74 mm^2·s^-1and good high temperature stability.The combination of these properties renders porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))Cpromising as light-weight ultrahigh temperature thermal insulation materials.
基金This study was supported by the Research Fund of the Department of Guangdong Science and Technology (No. 2003C30603) and Natural Science Foundation of Guangdong (No. 5001680).
文摘Background Human umbilical cord blood contains an abundance of immature stem/progenitor cells, which may participate in the repair of hearts that have been damaged by myocardial infarction (MI). This study aimed to evaluate the effects of human umbilical cord blood mononuclear cells (hUCBC) transplantation on cardiac function and left ventricular remodeling in rat model of MI. Methods Forty-five male Wistar rats were randomized into three groups: MI or control group (n=15), MI plus cell transplantation (n=15), and sham group (n=15). Acute myocardial infarction (AMI) was established by ligating the left anterior descending artery, thereafter, hUCBC were implanted into the marginal area of infarcted myocardium. In MI/control group, DMEM was injected instead of hUCBC following the same protocol. Left ventricular function assessment was carded out by echocardiography and invasive hemodynamic measurements one month post MI. All rats were sacrificed for histological and immunochemical examinations.Results The transplanted hUCBC survived and engaged in the process of myocardial repair in the host heart. Echocardiography demonstrated that left ventricular function improved significantly in the rats that underwent cell transplantation. Hemodynamic studies found a significantly decreased left ventricular end-diastolic pressure (LVEDP) [(21.08±8.10) mmHg vs (30.82±9.59) mmHg, P〈0.05], increase in +dp/dtmax [(4.29± 1.27) mmHg/ms vs (3.24±0.75) mmHg/ms, P〈0.05), and increase in -dp/dtmax [(3.71 ±0.79) mmHg/ms vs (3.00± 0.49) mmHg/ms, P〈0.05] among MI group with hUCBC transplantation when compared with MI/control group. Masson's trichrome staining revealed that the collagen density in the left ventricle was significantly lower in rats of transplantation group than that in the MI control groups [(6.33±2.69)% vs (11.10±3.75)%, P〈 0.01]. Based on immunostaining of α-actin, the numbers of microvessels were significantly (P〈0.01) increased at
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206)。
文摘Ytterbium aluminum garnet(Yb3Al5O12)is considered as a promising thermal barrier material.However,the main limitations of Yb3Al5O12 for thermal barrier applications are relative low thermal expansion coefficient and high thermal conductivity.In order to overcome these obstacles,herein,a new high entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic was designed,and then powders and bulk were prepared through solid-state reaction method and spark plasma sintering(SPS),respectively.The thermal expansion coefficient of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 is(8.54±0.29)×10^-6 K^-1 at 673 K–1273 K,which is about 9%higher than that of Yb3Al5O12.The thermal conductivity of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 ceramic is 3.81 W·m^-1 K^-1 at 300 K,which is about 18%lower than that of Yb3Al5O12.Moreover,there is no reaction between HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 and thermally grown(TG)Al2O3 even at 1600℃.After annealing at 1590℃for 18 h,the average grain size of HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 increases only from 1.56μm to 2.27μm.Close thermal expansion coefficient to TG Al2O3,low thermal conductivity,good phase stability,excellent chemical compatibility with TG Al2O3 and slow grain growth rate make HE(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 promising for thermal barrier applications.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206).
文摘Al2O3f/Al2O3 ceramic matrix composites(CMC)are promising candidate materials of blades and combustor liners of future gas turbines in light of their higher temperature capability,higher environmental stability and oxidizing-free capacity[1–3].Nevertheless,grain growth,sintering and creep deformation at high operation temperatures are still serious problems for Al2O3f/Al2O3 ceramic matrix composites,which can lead to a reduction in the strength and damage tolerance[2].Moreover,Al2O3 can be corroded by the high temperature water vapor in combustion environments and yields volatile products,such as Al(OH)3[4].Consequently,environmental barrier coatings(EBCs)are necessary for Al2O3f/Al2O3 ceramic matrix composites,which can protect Al2O3f/Al2O3 CMC from high temperature and flowing combustion gas corrosion and thus increase the high temperature capability and the service life of components.
基金supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating.
基金financially supported by the National Natural Science Foundation of China(Nos.51672064andU1435206)。
文摘A novel high entropy(HE) rare earth monosilicate(Yb0.25Y0.25Lu0.25Er0.252 SiO5 was synthesized by solid-state reaction method.X-ray diffraction and scanning electron microscopy analysis indicate that a single solid solution is formed with homogeneous distribution of rare-earth elements.HE(Yb0.25Y0.25Lu0.255 Er0.252 SiO5 exhibits excellent phase stability and anisotropy in thermal expansion.The coefficients of thermal expansion(CTEs) in three crystallographic directions are:αa=(2.57±0.07)×10^-6 K^-1,αb=(8.07±0.13)×10^-6 K^-1,αc=(9.98±0.10)×10^-6 K^-1.The strong anisotropy in thermal expansion is favorable in minimizing the coating/substrate mismatch if preferred orientation of HE(Yb0.25Y0.25Lu0.25Er0.252 SiO5 is controlled on either metal or ceramic substrate.
基金financially supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.
基金carried out in the framework of the Research on Regulating Mechanism of Amino Acid Composition of Rumen Microorganism in Ruminant Projectthe financial support from the National Natural Science Foundation of China (30571344)
文摘Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current experiments. Treatments are total essential amino acid (TEAA), His-removal, Lys-removal, Met-removal, and branch chain amino acid (BCAA)- removal. Results indicated that, pH-value ranged between 5.9 and 6.8, with the highest mean value for the group with BCAA-removal (6.54) in the culture. Concentration of NH3-N ranged between 10.99 to 30.51 mg 100 mL^-1, with the group of TEAA recording the highest average NH3-N concentration (17.85 mg 100 mL^-1). Yields of microbial protein and limiting degree on microbial growth varied with treatments (P 〈 0.01), and the lowest accrued in treatment with BCAA-removal (0.1389, 0.1772, and 0.3161 mg mL^-1 for bacteria, protozoa, and mixed microbes, respectively), compared to the group with TEAA, microbial production of mixed microbes decreased by 44.52%. As for micro-flora, protozoa to bacteria ratio was the lowest for the group with Lys-removal (89.12%), while the highest for the group with BCAA-removal (127.60%) (P 〈 0.01). Furthermore, PCR-SSCP analysis revealed that, microbial profile subjected to substrates within bacteria and protozoa groups. It was therefore concluded that, dietary amino acid influenced both rumen fermentation and microbial characteristics.
基金the National Natural Science Foundation of China under grant No.51972089,No.51672064 and No.U1435206。
文摘Electromagnetic wave(EMW)absorbing materials play a vital role in modern communication and information processing technologies to inhibit information leakage and prevent possible damages to environment and human bodies.Currently,most of EMW absorbing materials are either composites of two or more phases or in the form of nanosheets,nanowires or nanofibers in order to enhance the EMW absorption performance through dielectric loss,magnetic loss and dielectric/magnetic loss coupling.However,the combination of complex shapes/multi phases and nanosizes may compound the difficulties of materials processing,composition and interfaces control as well as performance maintenance during service.Thus,searching for single phase materials with good stability and superior EMW absorbing properties is appealing.To achieve this goal,the EMW absorbing properties of transition metal carbides TMCs(TM=Ti,Zr,Hf,Nb and Ta)and high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C which belong to ultrahigh temperature ceramics,were investigated in this work.Due to the good electrical conductivity and splitting of d orbitals into lower energy t2glevel and higher energy eglevel in TMC6octahedral arrangement,TMCs(TM=Ti,Zr,Hf,Nb and Ta)exhibit good EMW absorbing properties.Especially,Hf C and Ta C exhibit superior EMW absorbing properties.The minimum reflection loss(RLmin)value of Hf C is-55.8 d B at 6.0 GHz with the thickness of 3.8 mm and the effective absorption bandwidth(E_(AB))is 6.0 GHz from 12.0 to 18.0 GHz at thickness of 1.9 mm;the RL_(minvalue)of Ta C reaches-41.1 d B at 16.2 GHz with a thickness of 2.0 mm and the EABis 6.1 GHz with a thickness of 2.2 mm.Intriguingly,the electromagnetic parameters,i.e.,complex permittivity and permeability are tunable by forming single phase solid solution or high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.The R_(Lminvalue)of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C is-38.5 d B at 9.5 GHz with the thickness of 1.9 mm,and the EABis 2.3 GHz(from 11.3 to 13.6 GHz)at thickness o
基金financially supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089)。
文摘Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials.
基金the National Key Research and Development Plan of China(Technology helps Economy 20202016YFC0106300)+1 种基金the National Natural Science Foundation of China(82174230)Major Program Fund of Technical Innovation Project of Department of Science and Technology of Hubei Province(2016ACAl52).
文摘Benign prostatic hyperplasia (BPH) is highly prevalent among older men, impacting on their quality of life, sexual function, and genitourinary health, and has become an important global burden of disease. Transurethral plasmakinetic resection of prostate (TUPKP) is one of the foremost surgical procedures for the treatment of BPH. It has become well established in clinical practice with good efficacy and safety. In 2018, we issued the guideline “2018 Standard Edition”. However much new direct evidence has now emerged and this may change some of previous recommendations. The time is ripe to develop new evidence-based guidelines, so we formed a working group of clinical experts and methodologists. The steering group members posed 31 questions relevant to the management of TUPKP for BPH covering the following areas: questions relevant to the perioperative period (preoperative, intraoperative, and postoperative) of TUPKP in the treatment of BPH, postoperative complications and the level of surgeons’ surgical skill. We searched the literature for direct evidence on the management of TUPKP for BPH, and assessed its certainty generated recommendations using the grade criteria by the European Association of Urology. Recommendations were either strong or weak, or in the form of an ungraded consensus-based statement. Finally, we issued 36 statements. Among them, 23 carried strong recommendations, and 13 carried weak recommendations for the stated procedure. They covered questions relevant to the aforementioned three areas. The preoperative period for TUPKP in the treatment of BPH included indications and contraindications for TUPKP, precautions for preoperative preparation in patients with renal impairment and urinary tract infection due to urinary retention, and preoperative prophylactic use of antibiotics. Questions relevant to the intraoperative period incorporated surgical operation techniques and prevention and management of bladder explosion. The application to different populations incorporating the efficacy an