青少年早期专项化训练(Early sport specialization,ESS)是关乎青少年竞技运动训练科学化的重要问题,也是国内外体育科学领域持续关注的热点问题。通过文献资料法,明晰青少年早期专项化的概念,梳理早期专项化的基本内涵,归纳青少年早期...青少年早期专项化训练(Early sport specialization,ESS)是关乎青少年竞技运动训练科学化的重要问题,也是国内外体育科学领域持续关注的热点问题。通过文献资料法,明晰青少年早期专项化的概念,梳理早期专项化的基本内涵,归纳青少年早期专项化训练的国际经验及可能导致的负面影响,提出青少年专项化训练科学化的应对之策。基于此,拟定如下学者共识:第一、青少年早期专项化训练是指在青春期之前围绕一个特定运动项目进行的高强度的训练;第二、尽管诸如体操、跳水等运动项目要求很早(6~9岁)进行专项化训练,但绝不能忽视早期专项化训练极易对动作技能学习、运动技能学习、体能训练科学化、长期职业生涯发展及身体健康等造成的不良影响;第三、对于大多数运动项目来说,青少年相对较晚的进行专项化训练、或早期进行多样化训练且在晚期进行高水平专项化训练,成年后在竞技体育领域获得成功的概率更高;第四、技术主导类项目可以在正确动作模式基础上开展早期专项化训练,训练过程中应高度关注动作质量,避免出现动作模式异常诱发运动损伤;第五、青少年专项训练科学化的根本在于建立集体能、技术、战术、心理、运动智商及人文素养于一体的训练体系;第六、青少年专项训练科学化的关键在于依据生理年龄和身体机能发育特征,强化青少年各个时期体能训练科学化;第七、青少年早期专项化训练的综合应对策略为:选择合适的早期专项化训练时机、构建青少年长期发展模型、强化青少年多样化训练、训练与监控充分结合,以及建立与年龄相适应的赛事体系;第八、倡导以健康和快乐作为青少年参与体育运动的价值导向,以培养终身体育素养作为青少年参与体育运动的根本目标。展开更多
Skin,the largest organ in the human body,is sensitive to external stimuli.In recent years,an increasing number of skin-inspired electronics,including wearable electronics,implantable electronics,and electronic skin,ha...Skin,the largest organ in the human body,is sensitive to external stimuli.In recent years,an increasing number of skin-inspired electronics,including wearable electronics,implantable electronics,and electronic skin,have been developed because of their broad applications in healthcare and robotics.Physical sensors are one of the key building blocks of skin-inspired electronics.Typical physical sensors include mechanical sensors,temperature sensors,humidity sensors,electrophysiological sensors,and so on.In this review,we systematically review the latest advances of skin-inspired mechanical sensors,temperature sensors,and humidity sensors.The working mechanisms,key materials,device structures,and performance of various physical sensors are summarized and discussed in detail.Their applications in health monitoring,human disease diagnosis and treatment,and intelligent robots are reviewed.In addition,several novel properties of skin-inspired physical sensors such as versatility,self-healability,and implantability are introduced.Finally,the existing challenges and future perspectives of physical sensors for practical applications are discussed and proposed.展开更多
Hybrid perovskite possesses excellent photoelectric properties,including large light-absorption capacity and high carrier mobility,and is an ideal light-absorbing material for photoelectric devices.The grain size and ...Hybrid perovskite possesses excellent photoelectric properties,including large light-absorption capacity and high carrier mobility,and is an ideal light-absorbing material for photoelectric devices.The grain size and compactness of hybrid perovskite are key factors affecting the performance of photoelectric devices.The photocurrent and photoresponsivity of these devices are relatively low because of the rapidly recombined photoexcited electron-hole pairs in hybrid perovskite.Herein,we develop a facile two-step chemical vapor deposition(CVD)method to synthesize a high-quality van der Waals(vd Ws)MAPb I3/graphene heterostructure for high-performance image sensor.We introduced inorganic sources(PbI2)to vd Ws epitaxially grown Pb I2 film on a seamless graphene monolayer film template through CVD.Methylammonium iodide(MAI)was then reintroduced to prepare the vd Ws MAPb I3/graphene heterostructure.The MAPb I3 layer is composed of densely packed,large-size grains and displays a smooth surface.High photoresponsivity of 107A/W is achieved in the corresponding photodetector.Inspired by the human visual system,we designed a flexible photodetector array containing(24?24)pixels,achieving perfect image recognition and color discrimination.Our study may greatly facilitate the construction of high-performance optoelectronic devices in artificial retina,biomedical imaging,remote sensing,and optical communication.展开更多
The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect(MWSE)is still a challenging direction for reinforcing electromagnetic wave(EMW)absorption performance,and the rel...The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect(MWSE)is still a challenging direction for reinforcing electromagnetic wave(EMW)absorption performance,and the related EMW attenuation mechanism has rarely been elucidated.Herein,MWSE boostedβ-chitin/carbon nano-onions/Ni–P composites is prepared according to the heterointerface engineering strategy via facile layer-by-layer electrostatic assembly and electroless plating techniques.The heterogeneous interface is reinforced from the aspect of porous skeleton,nanomaterials and multilayer construction.The composites exhibit competitive EMW response mechanism between the conductive loss and the polarization/magnetic loss,as describing like the story of“The Hare and the Tortoise”.As a result,the composites not only achieve a minimum reflection loss(RL_(min))of−50.83 dB and an effective bandwidth of 6.8 GHz,but also present remarkable EMW interference shielding effectiveness of 66.66 dB.In addition,diverse functions such as good thermal insulation,infrared shielding and photothermal performance were also achieved in the hybrid composites as a result of intrinsic morphology and chemicophysics properties.Therefore,we believe that the boosted MWSE open up a novel orientation toward developing multifunctional composites with high-efficient EMW response and thermal management.展开更多
At present,the development trend of dressing materials is being multifunctional for convenient and long-term nursing care process of some complicated wounds.Here,basing on the theory of wound moist healing,an injectab...At present,the development trend of dressing materials is being multifunctional for convenient and long-term nursing care process of some complicated wounds.Here,basing on the theory of wound moist healing,an injectable and self-healing hydrogel comprising of collagen(COL),chitosan(CS)and oxidation modified Konjac glucomannan(OKGM),which acts as a macromolecular cross-linker to construct dynamic Schiff-base bonds was smartly designed.The strategy of introducing the silver nanoparticles(Ag NPs)into the COL-CS-OKGM hydrogel matrix achieved a markedly enhanced antibacterial activity derived from the synergistical effect between the Ag^(+)and the mild photothermal efficacy of Ag NPs,which also improved the local capillary blood circulation of the wound area to further facilitate wound healing process.The excellent syringeability and self-healing behaviors endowed the COL-CS-OKGM-Ag hydrogel with self-adapting ability for the wounds with irregular and large area needing frequent applying and changing without secondary injuries.In vitro and in vivo evaluations verified that so-designed COL-CS-OKGM-Ag hydrogel also with hemostatic performance is a promising multifunctional dressing for the treatments of infected wound with not only good biocompatibility and convenient use,but also with desired regenerative healing prognoses benefited from hydrogel moist environment and physiotherapy.展开更多
Silkworm silk fiber is an attractive material owing to its remarkable mechanical characteristics,excellent optical properties,and good biocompatibility and biodegradability.However,nano-processing of the silk fiber is...Silkworm silk fiber is an attractive material owing to its remarkable mechanical characteristics,excellent optical properties,and good biocompatibility and biodegradability.However,nano-processing of the silk fiber is still a challenge limiting its applications in nanoengineering and related fields.Herein,we report localized near-field enhancement-assisted ablation with an ultrafast laser to break this bottleneck.Localized processing of silk fiber,including nano-holing,nano-grooving,and cutting could retain the key molecular structure building blocks and the pristine functionality of the silk fiber.An extremely narrow nanohole with a width of^64 nm was successfully achieved.The processed silk fiber can be used to transfer micro/nanoparticles and drugs,showing potential for biomedical engineering.The processing strategy developed in this study can also be extended to other materials,paving a new way for fabricating functional nanostructures with precisely controlled size and morphology.展开更多
Although Si-based nanomaterials provide incomparable lithium ion storage ability in theory, it suffers from low initial Coulombic efficiency, electrical disconnection, and fracture due to huge volume changes after ext...Although Si-based nanomaterials provide incomparable lithium ion storage ability in theory, it suffers from low initial Coulombic efficiency, electrical disconnection, and fracture due to huge volume changes after extended cycles. As a result, it leads to a severe capacity fading and an increase in internal impedance. Herein, Ti-elemental MXene was employed as a matrix for the intermediate product of Si electrodes. The boundary between the inner core of pristine Si and its outer shell of amorphous Li x Si alloy was reconstructed. Smaller amorphous aggregates were observed in the MXene&Si hybrid electrode after 500 cycles by using transmission electron microscopy. Consequently, an enhanced specific capacity was achieved as MXene as a matrix enables loading amorphous Si.展开更多
Dasypyrum villosum is one of the most valuable gene resources in wheat improvement,especially for disease resistance.The mining of favorable genes from D.villosum is frustrated by the lack of a whole genome sequence.I...Dasypyrum villosum is one of the most valuable gene resources in wheat improvement,especially for disease resistance.The mining of favorable genes from D.villosum is frustrated by the lack of a whole genome sequence.In this study,we generated a doubled-haploid line,91C43^(DH),using microspore culture and obtained a 4.05-GB high-quality,chromosome-scale genome assembly for D.villosum.The assembly contains39727 high-confidence genes,and 85.31% of the sequences are repetitive.Two reciprocal translocation events were detected,and 7VS-4VL is a unique translocation in D.villosum.The prolamin seed storage protein-coding genes were found to be duplicated;in particular,the genes encoding low-molecular-weight glutenin at the Glu-V3 locus were significantly expanded.RNA sequencing(RNA-seq)analysis indicated that,after Blumeria graminearum f.sp tritici(Bgt)inoculation,there were more upregulated genes involved in the pattern-triggered immunity and effector-triggered immunity defense pathways in D.villosum than in Triticum urartu.MNase hypersensitive sequencing(MH-seq)identified two Bgt-inducible MH sites(MHSs),one in the promoter and one in the 3'terminal region of the powdery mildew resistance(Pm)gene NLR1-V.Each site had two subpeaks and they were termed MHS1(MHS1.1/1.2)and MHS2(MHS2.1/2.2).Bgt-inducible MHS2.2 was uniquely present in D.villosum,and MHS1.1 was more inducible in D.villosum than in wheat,suggesting that MHSs may be critical for regulation of NLR1-V expression and plant defense.In summary,this study provides a valuable genome resource for functional genomics studies and wheat-D.villosum introgression breeding.The identified regulatory mechanisms may also be exploited to develop new strategies for enhancing Pm resistance by optimizing gene expression in wheat.展开更多
Flexible strain sensors with high sensitivity,wide detection range,and low detection limit have continuously attracted great interest due to their tremendous application potential in areas such as health/medical-care,...Flexible strain sensors with high sensitivity,wide detection range,and low detection limit have continuously attracted great interest due to their tremendous application potential in areas such as health/medical-care,human-machine interface,as well as safety and security.While both of a high sensitivity and a wide working range are desired key parameters for a strain sensor,they are usually contrary to each other to be achieved on the same sensor due to the tightly structure dependence of both of them.Here,a flexible strain sensor with both high sensitivity and wide strain detection range is prepared based on the design of an integrated membrane containing both of parallel aligned and randomly aligned carbon nanofibers(CNFs).The parallel aligned CNF membrane(p-CNF)exhibits a low strain detection limit and high sensitivity,while the random aligned CNF membrane(r-CNF)exhibits a large strain detection range.Taking the advantages of both p-CNF and r-CNF,the strain sensor with stacked p-CNF and r-CNF(p/r-CNF)exhibits both high sensitivity and wide working range.Its gauge factor(GF)is 1,272 for strains under 0.5%and 2,266 for strain from 70%to 100%.At the same time,it can work in a wide strain range of 0.005%to 100%,fulfilling the requirements for accurately detecting full-range human motions.We demonstrated its applications in the recognition of facial expressions and joint movements.Furtherly,we constructed an intelligent lip-language recognition system,which can accurately track phonetic symbols and may help people with language disabilities,proving the potential of this strain sensor in health management and medical assistance.Besides,we foresee that the dual-alignment structure design of the p/r-CNF strain sensor may also be applied in the design of other high performance sensors.展开更多
Partial endothelial-to-mesenchymal transition(EndMT)is an intermediate phenotype observed in endothelial cells(ECs)undergoing a transition toward a mesenchymal state to support neovascularization during(patho)physiolo...Partial endothelial-to-mesenchymal transition(EndMT)is an intermediate phenotype observed in endothelial cells(ECs)undergoing a transition toward a mesenchymal state to support neovascularization during(patho)physiological angiogenesis.Here,we investigated the occurrence of partial EndMT in ECs under hypoxic/ischemic conditions and identified general transcription factor IIH subunit 4(GTF2H4)as a positive regulator of this process.In addition,we discovered that GTF2H4 collaborates with its target protein excision repair cross-complementation group 3(ERCC3)to co-regulate partial EndMT.Furthermore,by using phosphorylation proteomics and site-directed mutagenesis,we demonstrated that GTF2H4 was involved in the phosphorylation of receptor coactivator 3(NCOA3)at serine 1330,which promoted the interaction between NCOA3 and p65,resulting in the transcriptional activation of NF-κB and the NF-kB/Snail signaling axis during partial EndMT.In vivo experiments confirmed that GTF2H4 significantly promoted partial EndMT and angiogenesis after ischemic injury.Collectively,our findings reveal that targeting GTF2H4 is promising for tissue repair and offers potential opportunities for treating hypoxic/ischemic diseases.展开更多
针对天牛须搜索算法易陷入局部最优、寻优精度低、后期收敛速度慢等缺点,提出了一种带有预判机制和权重因子的改进天牛须算法PreWBAS(beetle antennae search algorithm with pre-determination and weight),并基于该算法给出了一种求...针对天牛须搜索算法易陷入局部最优、寻优精度低、后期收敛速度慢等缺点,提出了一种带有预判机制和权重因子的改进天牛须算法PreWBAS(beetle antennae search algorithm with pre-determination and weight),并基于该算法给出了一种求解路径规划问题的方法。首先在PreWBAS中引入预判机制使算法在每一次迭代预走一定步数,然后引入非线性递减的权重因子来平衡全局搜索能力和局部寻优能力。仿真实验结果表明,对于函数优化问题,改进后的算法相较于传统天牛须搜索算法具有更高的求解精度和收敛速度,不易陷入局部最优;对于路径规划问题,改进后的算法也拥有更好的寻优性能。展开更多
Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practic...Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practical applications are seriously obstructed by difficulties in thermodynamic phase regulation,complicated electrochemical phase transition,and unsatisfactory cycling life.Herein,we propose an efficient structural evolution strategy from biphase to monophase of Na_(0.766+x)Li_(x)Ni_(0.33-x)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) through Li+substitution.The role of Li+substitution not only simplifies the unfavorable phase transition by altering the local coordination of transition metal(TM)cations but also stabilizes the cathode–electrolyte interphase to prevent the degradation of TM cations during battery cycling.As a result,the thermodynamically robust O_(3)-Na_(0.826)Li_(0.06)Ni_(0.27)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) cathode delivers a high capacity of 139.4 mAh g^(-1) at 0.1 C and shows prolonged cycling life at high rates,with capacity retention of 81.6%at 5 C over 500 cycles.This work establishes a solid relationship between the thermodynamic structure evolution and electrochemistry of layered cathode materials,contributing to the development of long-life sodium-ion batteries.展开更多
文摘青少年早期专项化训练(Early sport specialization,ESS)是关乎青少年竞技运动训练科学化的重要问题,也是国内外体育科学领域持续关注的热点问题。通过文献资料法,明晰青少年早期专项化的概念,梳理早期专项化的基本内涵,归纳青少年早期专项化训练的国际经验及可能导致的负面影响,提出青少年专项化训练科学化的应对之策。基于此,拟定如下学者共识:第一、青少年早期专项化训练是指在青春期之前围绕一个特定运动项目进行的高强度的训练;第二、尽管诸如体操、跳水等运动项目要求很早(6~9岁)进行专项化训练,但绝不能忽视早期专项化训练极易对动作技能学习、运动技能学习、体能训练科学化、长期职业生涯发展及身体健康等造成的不良影响;第三、对于大多数运动项目来说,青少年相对较晚的进行专项化训练、或早期进行多样化训练且在晚期进行高水平专项化训练,成年后在竞技体育领域获得成功的概率更高;第四、技术主导类项目可以在正确动作模式基础上开展早期专项化训练,训练过程中应高度关注动作质量,避免出现动作模式异常诱发运动损伤;第五、青少年专项训练科学化的根本在于建立集体能、技术、战术、心理、运动智商及人文素养于一体的训练体系;第六、青少年专项训练科学化的关键在于依据生理年龄和身体机能发育特征,强化青少年各个时期体能训练科学化;第七、青少年早期专项化训练的综合应对策略为:选择合适的早期专项化训练时机、构建青少年长期发展模型、强化青少年多样化训练、训练与监控充分结合,以及建立与年龄相适应的赛事体系;第八、倡导以健康和快乐作为青少年参与体育运动的价值导向,以培养终身体育素养作为青少年参与体育运动的根本目标。
基金National Key Basic Research and Development Program,Grant/Award Number:2016YFA0200103National Natural Science Foundation of China,Grant/Award Numbers:21975141,51672153National Program for Support of Top-notch Young Professionals,Grant/Award Number:N/A。
文摘Skin,the largest organ in the human body,is sensitive to external stimuli.In recent years,an increasing number of skin-inspired electronics,including wearable electronics,implantable electronics,and electronic skin,have been developed because of their broad applications in healthcare and robotics.Physical sensors are one of the key building blocks of skin-inspired electronics.Typical physical sensors include mechanical sensors,temperature sensors,humidity sensors,electrophysiological sensors,and so on.In this review,we systematically review the latest advances of skin-inspired mechanical sensors,temperature sensors,and humidity sensors.The working mechanisms,key materials,device structures,and performance of various physical sensors are summarized and discussed in detail.Their applications in health monitoring,human disease diagnosis and treatment,and intelligent robots are reviewed.In addition,several novel properties of skin-inspired physical sensors such as versatility,self-healability,and implantability are introduced.Finally,the existing challenges and future perspectives of physical sensors for practical applications are discussed and proposed.
基金supported by the Ministry of Science and Technology of China(2016YFA0200103)the National Natural Science Foundation of China(51672153,21975141)the National Program for Support of Top-notch Young Professionals.
文摘Hybrid perovskite possesses excellent photoelectric properties,including large light-absorption capacity and high carrier mobility,and is an ideal light-absorbing material for photoelectric devices.The grain size and compactness of hybrid perovskite are key factors affecting the performance of photoelectric devices.The photocurrent and photoresponsivity of these devices are relatively low because of the rapidly recombined photoexcited electron-hole pairs in hybrid perovskite.Herein,we develop a facile two-step chemical vapor deposition(CVD)method to synthesize a high-quality van der Waals(vd Ws)MAPb I3/graphene heterostructure for high-performance image sensor.We introduced inorganic sources(PbI2)to vd Ws epitaxially grown Pb I2 film on a seamless graphene monolayer film template through CVD.Methylammonium iodide(MAI)was then reintroduced to prepare the vd Ws MAPb I3/graphene heterostructure.The MAPb I3 layer is composed of densely packed,large-size grains and displays a smooth surface.High photoresponsivity of 107A/W is achieved in the corresponding photodetector.Inspired by the human visual system,we designed a flexible photodetector array containing(24?24)pixels,achieving perfect image recognition and color discrimination.Our study may greatly facilitate the construction of high-performance optoelectronic devices in artificial retina,biomedical imaging,remote sensing,and optical communication.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2019YFE0122900)the National Natural Science Foundation of China(No 51971162,U1933112,51671146)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M671208)Open access funding provided by Shanghai Jiao Tong University
文摘The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect(MWSE)is still a challenging direction for reinforcing electromagnetic wave(EMW)absorption performance,and the related EMW attenuation mechanism has rarely been elucidated.Herein,MWSE boostedβ-chitin/carbon nano-onions/Ni–P composites is prepared according to the heterointerface engineering strategy via facile layer-by-layer electrostatic assembly and electroless plating techniques.The heterogeneous interface is reinforced from the aspect of porous skeleton,nanomaterials and multilayer construction.The composites exhibit competitive EMW response mechanism between the conductive loss and the polarization/magnetic loss,as describing like the story of“The Hare and the Tortoise”.As a result,the composites not only achieve a minimum reflection loss(RL_(min))of−50.83 dB and an effective bandwidth of 6.8 GHz,but also present remarkable EMW interference shielding effectiveness of 66.66 dB.In addition,diverse functions such as good thermal insulation,infrared shielding and photothermal performance were also achieved in the hybrid composites as a result of intrinsic morphology and chemicophysics properties.Therefore,we believe that the boosted MWSE open up a novel orientation toward developing multifunctional composites with high-efficient EMW response and thermal management.
基金supported by Sichuan Province Key Research and Development Project(2018SZ0046)the National Natural Science Foundation of China(51373105).
文摘At present,the development trend of dressing materials is being multifunctional for convenient and long-term nursing care process of some complicated wounds.Here,basing on the theory of wound moist healing,an injectable and self-healing hydrogel comprising of collagen(COL),chitosan(CS)and oxidation modified Konjac glucomannan(OKGM),which acts as a macromolecular cross-linker to construct dynamic Schiff-base bonds was smartly designed.The strategy of introducing the silver nanoparticles(Ag NPs)into the COL-CS-OKGM hydrogel matrix achieved a markedly enhanced antibacterial activity derived from the synergistical effect between the Ag^(+)and the mild photothermal efficacy of Ag NPs,which also improved the local capillary blood circulation of the wound area to further facilitate wound healing process.The excellent syringeability and self-healing behaviors endowed the COL-CS-OKGM-Ag hydrogel with self-adapting ability for the wounds with irregular and large area needing frequent applying and changing without secondary injuries.In vitro and in vivo evaluations verified that so-designed COL-CS-OKGM-Ag hydrogel also with hemostatic performance is a promising multifunctional dressing for the treatments of infected wound with not only good biocompatibility and convenient use,but also with desired regenerative healing prognoses benefited from hydrogel moist environment and physiotherapy.
基金the support from the National Key R&D Program of China(2017YFB1104300,2016YFA0200103 and 2018YFB1107200)the National Program for the Support of Top-notch Young Professionalsthe National Natural Science Foundation of China(51775303)。
文摘Silkworm silk fiber is an attractive material owing to its remarkable mechanical characteristics,excellent optical properties,and good biocompatibility and biodegradability.However,nano-processing of the silk fiber is still a challenge limiting its applications in nanoengineering and related fields.Herein,we report localized near-field enhancement-assisted ablation with an ultrafast laser to break this bottleneck.Localized processing of silk fiber,including nano-holing,nano-grooving,and cutting could retain the key molecular structure building blocks and the pristine functionality of the silk fiber.An extremely narrow nanohole with a width of^64 nm was successfully achieved.The processed silk fiber can be used to transfer micro/nanoparticles and drugs,showing potential for biomedical engineering.The processing strategy developed in this study can also be extended to other materials,paving a new way for fabricating functional nanostructures with precisely controlled size and morphology.
基金financial support provided by the Joint Foundation of Liaoning Province National Science FoundationShenyang National Laboratory for Materials Science (Grant No. 20180510047)+6 种基金the National Natural Science Foundation of China (Grant Nos. 91545119 , 21761132025 , 21773269 and 51872115)the Youth Innovation Promotion Association CAS (Grant No. 2015152)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)“Double-First Class” Discipline for Materials Science & EngineeringNatural Science Foundation of Anhui Province (1608085ME93)the Fundamental Research Funds for the Central Universities (JZ2018YYPY0305)the 111 Project “New Materials and Technology for Clean Energy” (B18018)
文摘Although Si-based nanomaterials provide incomparable lithium ion storage ability in theory, it suffers from low initial Coulombic efficiency, electrical disconnection, and fracture due to huge volume changes after extended cycles. As a result, it leads to a severe capacity fading and an increase in internal impedance. Herein, Ti-elemental MXene was employed as a matrix for the intermediate product of Si electrodes. The boundary between the inner core of pristine Si and its outer shell of amorphous Li x Si alloy was reconstructed. Smaller amorphous aggregates were observed in the MXene&Si hybrid electrode after 500 cycles by using transmission electron microscopy. Consequently, an enhanced specific capacity was achieved as MXene as a matrix enables loading amorphous Si.
基金financially supported by the National Key Agriculture Projects(NK2022060101)National Key Research and Development Program(2022YFF1002900,2020YFE0202900)+3 种基金the Fundamental Research Funds for the Central University(XUEKEN2022012)Jiangsu Provincial Key Research and Development Program(BE2021375,BE2022346)Seed Industry Revitalization Project of Jiangsu Province(JBGS2021006,2021013,2021047)Joint Research of Improved Wheat Variety of Anhui,and Jiangsu Agricultural Technology System(JATS)(JATS[2021]463,JATS[2022]464).
文摘Dasypyrum villosum is one of the most valuable gene resources in wheat improvement,especially for disease resistance.The mining of favorable genes from D.villosum is frustrated by the lack of a whole genome sequence.In this study,we generated a doubled-haploid line,91C43^(DH),using microspore culture and obtained a 4.05-GB high-quality,chromosome-scale genome assembly for D.villosum.The assembly contains39727 high-confidence genes,and 85.31% of the sequences are repetitive.Two reciprocal translocation events were detected,and 7VS-4VL is a unique translocation in D.villosum.The prolamin seed storage protein-coding genes were found to be duplicated;in particular,the genes encoding low-molecular-weight glutenin at the Glu-V3 locus were significantly expanded.RNA sequencing(RNA-seq)analysis indicated that,after Blumeria graminearum f.sp tritici(Bgt)inoculation,there were more upregulated genes involved in the pattern-triggered immunity and effector-triggered immunity defense pathways in D.villosum than in Triticum urartu.MNase hypersensitive sequencing(MH-seq)identified two Bgt-inducible MH sites(MHSs),one in the promoter and one in the 3'terminal region of the powdery mildew resistance(Pm)gene NLR1-V.Each site had two subpeaks and they were termed MHS1(MHS1.1/1.2)and MHS2(MHS2.1/2.2).Bgt-inducible MHS2.2 was uniquely present in D.villosum,and MHS1.1 was more inducible in D.villosum than in wheat,suggesting that MHSs may be critical for regulation of NLR1-V expression and plant defense.In summary,this study provides a valuable genome resource for functional genomics studies and wheat-D.villosum introgression breeding.The identified regulatory mechanisms may also be exploited to develop new strategies for enhancing Pm resistance by optimizing gene expression in wheat.
基金supported by the National Natural Science Foundation of China(Nos.52125201 and 21975141)the National Key Research and Development Program of China(No.2020YFA0210702).
文摘Flexible strain sensors with high sensitivity,wide detection range,and low detection limit have continuously attracted great interest due to their tremendous application potential in areas such as health/medical-care,human-machine interface,as well as safety and security.While both of a high sensitivity and a wide working range are desired key parameters for a strain sensor,they are usually contrary to each other to be achieved on the same sensor due to the tightly structure dependence of both of them.Here,a flexible strain sensor with both high sensitivity and wide strain detection range is prepared based on the design of an integrated membrane containing both of parallel aligned and randomly aligned carbon nanofibers(CNFs).The parallel aligned CNF membrane(p-CNF)exhibits a low strain detection limit and high sensitivity,while the random aligned CNF membrane(r-CNF)exhibits a large strain detection range.Taking the advantages of both p-CNF and r-CNF,the strain sensor with stacked p-CNF and r-CNF(p/r-CNF)exhibits both high sensitivity and wide working range.Its gauge factor(GF)is 1,272 for strains under 0.5%and 2,266 for strain from 70%to 100%.At the same time,it can work in a wide strain range of 0.005%to 100%,fulfilling the requirements for accurately detecting full-range human motions.We demonstrated its applications in the recognition of facial expressions and joint movements.Furtherly,we constructed an intelligent lip-language recognition system,which can accurately track phonetic symbols and may help people with language disabilities,proving the potential of this strain sensor in health management and medical assistance.Besides,we foresee that the dual-alignment structure design of the p/r-CNF strain sensor may also be applied in the design of other high performance sensors.
基金This work was supported by the National Natural Science Foundation of China(82170334 and 81870182)。
文摘Partial endothelial-to-mesenchymal transition(EndMT)is an intermediate phenotype observed in endothelial cells(ECs)undergoing a transition toward a mesenchymal state to support neovascularization during(patho)physiological angiogenesis.Here,we investigated the occurrence of partial EndMT in ECs under hypoxic/ischemic conditions and identified general transcription factor IIH subunit 4(GTF2H4)as a positive regulator of this process.In addition,we discovered that GTF2H4 collaborates with its target protein excision repair cross-complementation group 3(ERCC3)to co-regulate partial EndMT.Furthermore,by using phosphorylation proteomics and site-directed mutagenesis,we demonstrated that GTF2H4 was involved in the phosphorylation of receptor coactivator 3(NCOA3)at serine 1330,which promoted the interaction between NCOA3 and p65,resulting in the transcriptional activation of NF-κB and the NF-kB/Snail signaling axis during partial EndMT.In vivo experiments confirmed that GTF2H4 significantly promoted partial EndMT and angiogenesis after ischemic injury.Collectively,our findings reveal that targeting GTF2H4 is promising for tissue repair and offers potential opportunities for treating hypoxic/ischemic diseases.
文摘针对天牛须搜索算法易陷入局部最优、寻优精度低、后期收敛速度慢等缺点,提出了一种带有预判机制和权重因子的改进天牛须算法PreWBAS(beetle antennae search algorithm with pre-determination and weight),并基于该算法给出了一种求解路径规划问题的方法。首先在PreWBAS中引入预判机制使算法在每一次迭代预走一定步数,然后引入非线性递减的权重因子来平衡全局搜索能力和局部寻优能力。仿真实验结果表明,对于函数优化问题,改进后的算法相较于传统天牛须搜索算法具有更高的求解精度和收敛速度,不易陷入局部最优;对于路径规划问题,改进后的算法也拥有更好的寻优性能。
基金This work was supported by the National Natural Science Foundation of China(52102302,51807146,and 22179021)the Young Talent Support Plan of Xi'an Jiaotong University(Grant No.DQ6J011)+2 种基金Natural Science Foundation of Shaanxi Province(2023-JC-QN-0115)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE23313)the Fundamental Research Funds for the Central Universities(xyz012023165).
文摘Layered composite oxide materials with O3/P2 biphasic crystallographic structure typically demonstrate a combination of high capacities of the O3 phase and high operation voltages of the P2 phase.However,their practical applications are seriously obstructed by difficulties in thermodynamic phase regulation,complicated electrochemical phase transition,and unsatisfactory cycling life.Herein,we propose an efficient structural evolution strategy from biphase to monophase of Na_(0.766+x)Li_(x)Ni_(0.33-x)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) through Li+substitution.The role of Li+substitution not only simplifies the unfavorable phase transition by altering the local coordination of transition metal(TM)cations but also stabilizes the cathode–electrolyte interphase to prevent the degradation of TM cations during battery cycling.As a result,the thermodynamically robust O_(3)-Na_(0.826)Li_(0.06)Ni_(0.27)Mn_(0.5)Fe_(0.1)Ti_(0.07)O_(2) cathode delivers a high capacity of 139.4 mAh g^(-1) at 0.1 C and shows prolonged cycling life at high rates,with capacity retention of 81.6%at 5 C over 500 cycles.This work establishes a solid relationship between the thermodynamic structure evolution and electrochemistry of layered cathode materials,contributing to the development of long-life sodium-ion batteries.