Magnetic domain wall(DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numericall...Magnetic domain wall(DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numerically demonstrate the DW dynamics driven by the synergistic interaction between current-induced spin-transfer torque(STT) and voltage-controlled strain gradient(VCSG) in multiferroic heterostructures. Through electromechanical and micromagnetic simulations, we show that a desirable strain gradient can be created and it further modulates the equilibrium position and velocity of the current-driven DW motion. Meanwhile, an analytical Thiele's model is developed to describe the steady motion of DW and the analytical results are quite consistent with the simulation data. Finally, we find that this combination effect can be leveraged to design DW-based biological neurons where the synergistic interaction between STT and VCSG-driven DW motion as integrating and leaking motivates mimicking leaky-integrate-and-fire(LIF) and self-reset function. Importantly, the firing response of the LIF neuron can be efficiently modulated, facilitating the exploration of tunable activation function generators, which can further help improve the computational capability of the neuromorphic system.展开更多
Magnetic skyrmions, with topologically protected particle-like magnetization configurations, are promising information carriers for future spintronics devices with ultralow energy consumption. Generally, during motion...Magnetic skyrmions, with topologically protected particle-like magnetization configurations, are promising information carriers for future spintronics devices with ultralow energy consumption. Generally, during motion, skyrmions suffer from the skyrmion Hall effect(Sk HE) wherein the skyrmions deflect away from the intended path of the driving force.Numerous methods have been proposed to avoid this detrimental effect. In this study, we propose controllable alternating current(AC)-driven skyrmion propagation in a ferromagnetic nanowire based on combination of gate-voltage-controlled magnetic anisotropy(VCMA) and Sk HE. Micromagnetic simulations show that a skyrmion oscillatory closed-loop-like in situ motion driven by AC can be transformed into directional ratchet-like propagation along the nanotrack by creating a VCMA-gate barrier. Additionally, we show that the skyrmion propagation conditions depend on the gate barrier potential and driving AC parameters, and they can be used for the optimal design of nanotrack devices. Moreover, this mechanism could be used to control skyrmion macroscopic propagation directions by dynamically alternating the voltage of another series of gates. We further show the dynamic control of the long-distance propagation of skyrmions along with the pinning state. The study results provide a promising route for designing future skyrmion-based spintronics logical and memory devices.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51902300, 11972333, and 11902316)the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY21F010011, LZ19A020001, and LZ23A020002)the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant Nos. 2021YW02 and 2022YW88)。
文摘Magnetic domain wall(DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numerically demonstrate the DW dynamics driven by the synergistic interaction between current-induced spin-transfer torque(STT) and voltage-controlled strain gradient(VCSG) in multiferroic heterostructures. Through electromechanical and micromagnetic simulations, we show that a desirable strain gradient can be created and it further modulates the equilibrium position and velocity of the current-driven DW motion. Meanwhile, an analytical Thiele's model is developed to describe the steady motion of DW and the analytical results are quite consistent with the simulation data. Finally, we find that this combination effect can be leveraged to design DW-based biological neurons where the synergistic interaction between STT and VCSG-driven DW motion as integrating and leaking motivates mimicking leaky-integrate-and-fire(LIF) and self-reset function. Importantly, the firing response of the LIF neuron can be efficiently modulated, facilitating the exploration of tunable activation function generators, which can further help improve the computational capability of the neuromorphic system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51902300,11972333,and 11902316)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY21F010011,LZ19A020001,and LZ23A020002)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant Nos.2021YW02 and 2022YW88)。
文摘Magnetic skyrmions, with topologically protected particle-like magnetization configurations, are promising information carriers for future spintronics devices with ultralow energy consumption. Generally, during motion, skyrmions suffer from the skyrmion Hall effect(Sk HE) wherein the skyrmions deflect away from the intended path of the driving force.Numerous methods have been proposed to avoid this detrimental effect. In this study, we propose controllable alternating current(AC)-driven skyrmion propagation in a ferromagnetic nanowire based on combination of gate-voltage-controlled magnetic anisotropy(VCMA) and Sk HE. Micromagnetic simulations show that a skyrmion oscillatory closed-loop-like in situ motion driven by AC can be transformed into directional ratchet-like propagation along the nanotrack by creating a VCMA-gate barrier. Additionally, we show that the skyrmion propagation conditions depend on the gate barrier potential and driving AC parameters, and they can be used for the optimal design of nanotrack devices. Moreover, this mechanism could be used to control skyrmion macroscopic propagation directions by dynamically alternating the voltage of another series of gates. We further show the dynamic control of the long-distance propagation of skyrmions along with the pinning state. The study results provide a promising route for designing future skyrmion-based spintronics logical and memory devices.