Toroidal multipole is a special current distribution that has many different characteristics from electric multipole and magnetic multipole distributions.Because of its special properties,the toroidal dipole is a rese...Toroidal multipole is a special current distribution that has many different characteristics from electric multipole and magnetic multipole distributions.Because of its special properties,the toroidal dipole is a research hotspot in the field of metamaterials and nanophotonics.However,the low scattering of the toroidal dipole moment makes its excitation a challenging task.At present,there are relatively few studies on its specific engineering applications.In this paper,by slotting in the rectangular cavity,the excitation of an equivalent toroidal dipole is successfully achieved over a wide frequency range of 53-58 GHz.Results indicate that under the action of the toroidal dipole,the TE_(10)mode electromagnetic waves transmitted in the rectangular waveguide are converted into vector beams and are radiated outwards.Further adjusting the spatial distribution of the magnetic dipoles in the toroidal dipoles yields results that indicate that the resonance mode in the slot is still dominated by the magnetic toroidal dipole moment,and the electromagnetic waves radiating outward are vortex beams carrying vector polarization.The scattered energy of each dipole moment inside the antenna is calculated.This calculation verifies that the mass of the vector beam and vector vortex beam is closely related to the toroidal dipole supported by this antenna.The proposed structure can be applied to explorations in vortex filtering,in photon entanglement,and in the photonic spin Hall effect.展开更多
Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic met...Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic method still has some inevitable disadvantages. In this paper, we present an optical plasma boundary reconstruction algorithm. This method uses EFIT reconstruction results as the standard to create the optimally optical reconstruction. Traditional edge detection methods cannot extract a clear plasma boundary for reconstruction. Based on global contrast, we propose an edge detection algorithm to extract the plasma boundary in the image plane. Illumination in this method is robust. The extracted boundary and the boundary reconstructed by EFIT are fitted by same-order polynomials and the transformation matrix exists. To acquire this matrix without camera calibration, the extracted plasma boundary is transformed from the image plane to the Tokamak poloidal plane by a mathematical model,which is optimally resolved by using least squares to minimize the error between the optically reconstructed result and the EFIT result. Once the transform matrix is acquired, we can optically reconstruct the plasma boundary with only an arbitrary image captured. The error between the method and EFIT is presented and the experimental results of different polynomial orders are discussed.展开更多
目的:应用Meta分析探讨眼眶爆裂性骨折结膜入路和皮肤入路对术后并发症的影响。方法:通过计算机检索PubMed、Web of Science、Cochrane library、OVID、中国生物医学文献数据库、维普、万方及CNKI数据库中从建库至2018-05-30期间发表的...目的:应用Meta分析探讨眼眶爆裂性骨折结膜入路和皮肤入路对术后并发症的影响。方法:通过计算机检索PubMed、Web of Science、Cochrane library、OVID、中国生物医学文献数据库、维普、万方及CNKI数据库中从建库至2018-05-30期间发表的关于经结膜入路和下睑缘皮肤入路治疗眼眶爆裂性骨折术后并发症比较的随机对照试验和队列研究。采用Review Manager 5.3统计学软件对两种术式并发症发生率进行Meta分析。结果:共纳入7个队列研究,纽卡斯尔渥太华量表(NOS)评分法表明纳入文献质量均在6分以上,Meta分析显示结膜入路组和下睑缘入路组间效应量比值比(OR)的差异没有统计学意义[OR=0.74,95%CI(0.44~1.24),P=0.25)]。敏感性分析显示:Meta分析结果稳定可靠。漏斗图分析显示:纳入的文献可能存在发表偏倚。结论:皮肤入路和结膜入路对眼眶爆裂性骨折术后并发症发生率的影响差别不大,两种入路各有优缺点,需要结合临床实际综合考虑选择最合适的手术入路。展开更多
We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulen...We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulences in two or threedimensional geometries. The heterogeneity arises from a gradient of bacterial activity due to oxygen depletion along the droplet’s radial direction. Motile bacteria inject energy at individual scales, resulting in local anisotropic energy fluctuations that collectively give rise to isotropic turbulence. We find that the total kinetic energy and enstrophy decrease as distance from the drop contact line increases, due to the weakening of bacterial activity caused by oxygen depletion. While the balance between kinetic energy and enstrophy establishes a characteristic vortex scale depending on the contact angle of the sessile drop. The energy spectrum exhibits diverse scaling behaviors at large wavenumber, ranging from k-1/5to k-1,depending on the geometric confinement. Our findings demonstrate how spatial regulation of turbulence can be achieved by tuning the activity of driving units, offering insights into the dynamic behavior of living systems and the potential for controlling turbulence through gradient confinements.展开更多
In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional ...In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional interferometers to determine the displacement direction.The displacement measurement principle and signal processing method of the orthogonal double interferometer are studied.Unlike the arctangent algorithm,the displacement analysis uses the arc cosine algorithm,avoiding any pole limit in the distance analysis process.The minimum step size of the final experimental displacement system is 5 nm,which exhibits good repeatability,and the average error is less than 0.12 nm.展开更多
基金supported by the National Key R&D Program of China(No.2021YFC290202)the National Natural Science Foundation of China(No.51874301)the Primary Research&Development Plan of Xuzhou City(No.KC20162)。
文摘Toroidal multipole is a special current distribution that has many different characteristics from electric multipole and magnetic multipole distributions.Because of its special properties,the toroidal dipole is a research hotspot in the field of metamaterials and nanophotonics.However,the low scattering of the toroidal dipole moment makes its excitation a challenging task.At present,there are relatively few studies on its specific engineering applications.In this paper,by slotting in the rectangular cavity,the excitation of an equivalent toroidal dipole is successfully achieved over a wide frequency range of 53-58 GHz.Results indicate that under the action of the toroidal dipole,the TE_(10)mode electromagnetic waves transmitted in the rectangular waveguide are converted into vector beams and are radiated outwards.Further adjusting the spatial distribution of the magnetic dipoles in the toroidal dipoles yields results that indicate that the resonance mode in the slot is still dominated by the magnetic toroidal dipole moment,and the electromagnetic waves radiating outward are vortex beams carrying vector polarization.The scattered energy of each dipole moment inside the antenna is calculated.This calculation verifies that the mass of the vector beam and vector vortex beam is closely related to the toroidal dipole supported by this antenna.The proposed structure can be applied to explorations in vortex filtering,in photon entanglement,and in the photonic spin Hall effect.
基金supported by the National Natural Science Foundation of China(Nos.61375049 and 61473253)
文摘Reconstructing the shape and position of plasma is an important issue in Tokamaks. Equilibrium and fitting(EFIT) code is generally used for plasma boundary reconstruction in some Tokamaks. However, this magnetic method still has some inevitable disadvantages. In this paper, we present an optical plasma boundary reconstruction algorithm. This method uses EFIT reconstruction results as the standard to create the optimally optical reconstruction. Traditional edge detection methods cannot extract a clear plasma boundary for reconstruction. Based on global contrast, we propose an edge detection algorithm to extract the plasma boundary in the image plane. Illumination in this method is robust. The extracted boundary and the boundary reconstructed by EFIT are fitted by same-order polynomials and the transformation matrix exists. To acquire this matrix without camera calibration, the extracted plasma boundary is transformed from the image plane to the Tokamak poloidal plane by a mathematical model,which is optimally resolved by using least squares to minimize the error between the optically reconstructed result and the EFIT result. Once the transform matrix is acquired, we can optically reconstruct the plasma boundary with only an arbitrary image captured. The error between the method and EFIT is presented and the experimental results of different polynomial orders are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174306 and 12004308)the Natural Science Basic Research Program of Shaanxi (Grant No. 2023-JC-JQ-02)。
文摘We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulences in two or threedimensional geometries. The heterogeneity arises from a gradient of bacterial activity due to oxygen depletion along the droplet’s radial direction. Motile bacteria inject energy at individual scales, resulting in local anisotropic energy fluctuations that collectively give rise to isotropic turbulence. We find that the total kinetic energy and enstrophy decrease as distance from the drop contact line increases, due to the weakening of bacterial activity caused by oxygen depletion. While the balance between kinetic energy and enstrophy establishes a characteristic vortex scale depending on the contact angle of the sessile drop. The energy spectrum exhibits diverse scaling behaviors at large wavenumber, ranging from k-1/5to k-1,depending on the geometric confinement. Our findings demonstrate how spatial regulation of turbulence can be achieved by tuning the activity of driving units, offering insights into the dynamic behavior of living systems and the potential for controlling turbulence through gradient confinements.
基金supported in part by the National Natural Science Foundation of China(No.62005194).
文摘In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional interferometers to determine the displacement direction.The displacement measurement principle and signal processing method of the orthogonal double interferometer are studied.Unlike the arctangent algorithm,the displacement analysis uses the arc cosine algorithm,avoiding any pole limit in the distance analysis process.The minimum step size of the final experimental displacement system is 5 nm,which exhibits good repeatability,and the average error is less than 0.12 nm.