Quantum teleportation can transfer an unknown quantum state between distant quantum nodes,which holds great promise in enabling large-scale quantum networks.To advance the full potential of quantum teleportation,quant...Quantum teleportation can transfer an unknown quantum state between distant quantum nodes,which holds great promise in enabling large-scale quantum networks.To advance the full potential of quantum teleportation,quantum states must be faithfully transferred at a high rate over long distance.Despite recent impressive advances,a high-rate quantum teleportation system across metropolitan fiber networks is extremely desired.Here,we demonstrate a quantum teleportation system which transfers quantum states carried by independent photons at a rate of 7.1±0.4 Hz over 64-km-long fiber channel.An average single-photon fidelity of≥90.6±2.6%is achieved,which exceeds the maximum fidelity of 2/3 in classical regime.Our result marks an important milestone towards quantum networks and opens the door to exploring quantum entanglement based informatic applications for the future quantum internet.展开更多
Heralded single-photon source(HSPS)intrinsically suffers from the trade-off between the heralded single-photon rate and the single-photon purity.To break through this trade-off,one can apply multiplexing technology in...Heralded single-photon source(HSPS)intrinsically suffers from the trade-off between the heralded single-photon rate and the single-photon purity.To break through this trade-off,one can apply multiplexing technology in different degrees of freedom that significantly improves the performance of the HSPS.Here,we propose a 1.5μm chip-scale HSPS on lithium niobate on insulator by employing spectral multiplexing and active feedforward spectral manipulating,and we demonstrate a proof-of-principle experiment with discrete fiber-based components.With continuous-wave laser pumping and three spectral modes multiplexed,our experimental results show that the spectral multiplexing improves the heralded single-photon rate by near threefold while keeping the g^((2))(0)as low as 0.0006±0.0001 at a measured single-photon rate of 3.1 kHz.By measuring the joint spectral intensity,we show that the spectral multiplexing and feed-forward control effectively erase the frequency correlation of photon pairs.Moreover,we implement the Hong-Ou-Mandel interference between the spectrally multiplexed single photons and photons from an independent weak coherence source,which indicates that the multiplexed single photons are highly indistinguishable after the spectral manipulation.Our results pave a way for on-chip scalable and high-performance HSPS with spectral multiplexing toward deterministic single-photon emission.展开更多
In this paper,high-uniformity 2×64 silicon avalanche photodiode[APD]arrays are reported.Silicon multiple epitaxy technology was used,and the high performance APD arrays based on double-layer epiwafers are achieve...In this paper,high-uniformity 2×64 silicon avalanche photodiode[APD]arrays are reported.Silicon multiple epitaxy technology was used,and the high performance APD arrays based on double-layer epiwafers are achieved for the first time,to the best of our knowledge.A high-uniformity breakdown voltage with a fluctuation of smaller than 3.5 V is obtained for the fabricated APD arrays.The dark currents are below 90 pA for all 128 pixels at unity gain voltage.The pixels in the APD arrays show a gain factor of larger than 300 and a peak responsivity of 0.53 A/W@M=1 at 850 nm[corresponding to maximum external quantum efficiency of 81%]at room temperature.Quick optical pulse response time was measured,and a corresponding cutoff frequency up to 100 MHz was obtained.展开更多
Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural p...Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural photonic crystal features and they are favourable candidates for single-photon detection.Considering that superconductors have completely different properties from conventional optical materials,we study the energy level diagram and mid-infrared 3μm–5μm transmission spectrum of two-dimensional superconducting photonic crystals in both superconducting and quenched states with the finite element method.The energy level diagram of the circular crystal column superconducting structure shows that the structure has a large band gap width in both states.At the same fill factor,the circular crystal column superconducting structure has a larger band gap width than the others structures.For lattice structures,the zero transmission point of the square lattice structure is robust to the incident angle and environmental temperature.Our research has guiding significance for the design of new material photonic crystals,photon modulation and detection.展开更多
基金This work was supported by the National Key Research and Development Program of China(Nos.2018YFA0307400,2018YFA0306102)National Natural Science Foundation of China(Nos.61775025,91836102,U19A2076,62005039)+1 种基金Innovation Program for Quantum Science and Technology(No.2021ZD0301702)Sichuan Science and Technology Program(Nos.2021YFSY0066,2021YFSY0062,2021YFSY0063,2021YFSY0064,2021YFSY0065).The authors thank X.X.H,Y.X.L and L.B.Z from the Information Center of the University of Electronic Science and Technology of China(UESTC)for providing access to the campus fiber network and for the help during the experiment.
文摘Quantum teleportation can transfer an unknown quantum state between distant quantum nodes,which holds great promise in enabling large-scale quantum networks.To advance the full potential of quantum teleportation,quantum states must be faithfully transferred at a high rate over long distance.Despite recent impressive advances,a high-rate quantum teleportation system across metropolitan fiber networks is extremely desired.Here,we demonstrate a quantum teleportation system which transfers quantum states carried by independent photons at a rate of 7.1±0.4 Hz over 64-km-long fiber channel.An average single-photon fidelity of≥90.6±2.6%is achieved,which exceeds the maximum fidelity of 2/3 in classical regime.Our result marks an important milestone towards quantum networks and opens the door to exploring quantum entanglement based informatic applications for the future quantum internet.
基金Sichuan Province Science and Technology Support Program(2018JY0084)National Key Research and Development Program of China(2017YFA0304000,2017YFB0405100,2018YFA0306102,2018YFA0307400,2019YFB2203400)National Natural Science Foundation of China(12074058,61405030,61704164,61775025,62005039,62075034,91836102,U19A2076)。
文摘Heralded single-photon source(HSPS)intrinsically suffers from the trade-off between the heralded single-photon rate and the single-photon purity.To break through this trade-off,one can apply multiplexing technology in different degrees of freedom that significantly improves the performance of the HSPS.Here,we propose a 1.5μm chip-scale HSPS on lithium niobate on insulator by employing spectral multiplexing and active feedforward spectral manipulating,and we demonstrate a proof-of-principle experiment with discrete fiber-based components.With continuous-wave laser pumping and three spectral modes multiplexed,our experimental results show that the spectral multiplexing improves the heralded single-photon rate by near threefold while keeping the g^((2))(0)as low as 0.0006±0.0001 at a measured single-photon rate of 3.1 kHz.By measuring the joint spectral intensity,we show that the spectral multiplexing and feed-forward control effectively erase the frequency correlation of photon pairs.Moreover,we implement the Hong-Ou-Mandel interference between the spectrally multiplexed single photons and photons from an independent weak coherence source,which indicates that the multiplexed single photons are highly indistinguishable after the spectral manipulation.Our results pave a way for on-chip scalable and high-performance HSPS with spectral multiplexing toward deterministic single-photon emission.
基金supported by the National Science and Technology Major Project(No.2018YFE0200900)。
文摘In this paper,high-uniformity 2×64 silicon avalanche photodiode[APD]arrays are reported.Silicon multiple epitaxy technology was used,and the high performance APD arrays based on double-layer epiwafers are achieved for the first time,to the best of our knowledge.A high-uniformity breakdown voltage with a fluctuation of smaller than 3.5 V is obtained for the fabricated APD arrays.The dark currents are below 90 pA for all 128 pixels at unity gain voltage.The pixels in the APD arrays show a gain factor of larger than 300 and a peak responsivity of 0.53 A/W@M=1 at 850 nm[corresponding to maximum external quantum efficiency of 81%]at room temperature.Quick optical pulse response time was measured,and a corresponding cutoff frequency up to 100 MHz was obtained.
基金the National Key Research and Development Program of China(Grant No.2021YFB3601201)the National Natural Science Foundation of China(Grant No.62101057)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant No.IPOC2021ZT07).
文摘Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural photonic crystal features and they are favourable candidates for single-photon detection.Considering that superconductors have completely different properties from conventional optical materials,we study the energy level diagram and mid-infrared 3μm–5μm transmission spectrum of two-dimensional superconducting photonic crystals in both superconducting and quenched states with the finite element method.The energy level diagram of the circular crystal column superconducting structure shows that the structure has a large band gap width in both states.At the same fill factor,the circular crystal column superconducting structure has a larger band gap width than the others structures.For lattice structures,the zero transmission point of the square lattice structure is robust to the incident angle and environmental temperature.Our research has guiding significance for the design of new material photonic crystals,photon modulation and detection.