难熔高熵合金因其优异的高温屈服强度和抗软化性能而备受关注.然而,室温延展性差和较高的密度目前仍然是其加工以及应用需要面临的主要挑战.本文利用材料的固有特性作为合金设计原则,通过调控Mo浓度,制备了三种新型单相体心立方结构的Ti...难熔高熵合金因其优异的高温屈服强度和抗软化性能而备受关注.然而,室温延展性差和较高的密度目前仍然是其加工以及应用需要面临的主要挑战.本文利用材料的固有特性作为合金设计原则,通过调控Mo浓度,制备了三种新型单相体心立方结构的Ti3Zr1.5Nb((1-x))-MoxVAl_(0.25)(x=0.1,0.3,0.5,标记为Mo0.1,Mo0.3和Mo0.5)合金,这些合金都具有良好的拉伸延展性和低于6 g cm^(-3)的密度.高剪切模量Mo元素的引入促进了晶格畸变,从而提高了合金中的晶格摩擦应力以及屈服强度.铸态Mo0.3和Mo0.5合金均表现出超过1100 MPa的拉伸屈服强度,以及大于15%的断裂延伸率.Labusch模型计算结果表明,原子尺寸和剪切模量失配引起的固溶强化对屈服强度的影响最为显著.通过观察变形微观组织发现,由于存在高密度的位错界面,扭折带、位错壁以及泰勒晶格的形成能有效提高合金的应变硬化能力,使合金在展现高强度的同时保持足够的延展性.该研究为开发具有高强韧的单相难熔高熵合金提供了新的见解.展开更多
锂离子电池广泛应用于电动汽车、混合动力汽车、便携式电子设备等储能系统,但由于电荷在活性材料中传输缓慢以及活性材料易粉碎等缺点,开发同时具有高容量以及快充性能的电极材料仍然是一个极大的挑战.针对这一问题,本文通过温度调控将S...锂离子电池广泛应用于电动汽车、混合动力汽车、便携式电子设备等储能系统,但由于电荷在活性材料中传输缓慢以及活性材料易粉碎等缺点,开发同时具有高容量以及快充性能的电极材料仍然是一个极大的挑战.针对这一问题,本文通过温度调控将SnO_(2)量子点或Sn纳米团簇均匀负载在中空多孔碳纳米纤维(HPCNFs)的内部,用于制备个性化定制锂离子电池.一方面,高度互联的碳纳米纤维形成三维网络,加快了电子传输,提高了电子导电性.另一方面,中空多孔结构缩短了锂离子传输路径,促进了锂离子的快速扩散,同时,抑制了Sn和SnO_(2)的体积膨胀.由于具有较高的锂离子吸附性能以及快的离子扩散速率,低碳化温度下(450℃)合成的SnO_(2)@HPCNFs复合电极在0.1 A g^(-1)的小电流密度下具有较高的放电比容量(899.3 mA h g~(-1)).此外,由于在大的电流密度下,Sn的大孔结构能够储存更多的锂离子,以及具有较高的电子电导率,因此,高碳化温度下(850℃)制备的Sn@HPCNFs复合电极展现出优异的快充性能,同时,在5 A g^(-1)(~10 C)的高电流密度下具有238.8 mA h g^(-1)的放电容量.本文通过调控碳化温度来研究SnO_(2)和Sn电极之间的电化学行为,为构建高性能储能器件提供了新的思路.展开更多
基金supported by the National Natural Science Foundation of China (52074257)Chinese Academy of Sciences (ZDBS-LY-JSC023)。
文摘难熔高熵合金因其优异的高温屈服强度和抗软化性能而备受关注.然而,室温延展性差和较高的密度目前仍然是其加工以及应用需要面临的主要挑战.本文利用材料的固有特性作为合金设计原则,通过调控Mo浓度,制备了三种新型单相体心立方结构的Ti3Zr1.5Nb((1-x))-MoxVAl_(0.25)(x=0.1,0.3,0.5,标记为Mo0.1,Mo0.3和Mo0.5)合金,这些合金都具有良好的拉伸延展性和低于6 g cm^(-3)的密度.高剪切模量Mo元素的引入促进了晶格畸变,从而提高了合金中的晶格摩擦应力以及屈服强度.铸态Mo0.3和Mo0.5合金均表现出超过1100 MPa的拉伸屈服强度,以及大于15%的断裂延伸率.Labusch模型计算结果表明,原子尺寸和剪切模量失配引起的固溶强化对屈服强度的影响最为显著.通过观察变形微观组织发现,由于存在高密度的位错界面,扭折带、位错壁以及泰勒晶格的形成能有效提高合金的应变硬化能力,使合金在展现高强度的同时保持足够的延展性.该研究为开发具有高强韧的单相难熔高熵合金提供了新的见解.
基金supported by the National Natural Science Foundation of China(51503105 and 52202256)the Natural Science Foundation of Jiangsu Province of China(BK20220612)+2 种基金the Science and Technology Development Fund,Macao SAR(0092/2019/A2 and 0035/2019/AMJ)the funds from Jiangsu University“Qinglan Project”supported by the Opening Project of Jiangsu Engineering Research Centre of Textile Dyeing and Printing for Energy Conservation,Discharge Reduction and Cleaner Production,Soochow University(SDGC2102)。
文摘锂离子电池广泛应用于电动汽车、混合动力汽车、便携式电子设备等储能系统,但由于电荷在活性材料中传输缓慢以及活性材料易粉碎等缺点,开发同时具有高容量以及快充性能的电极材料仍然是一个极大的挑战.针对这一问题,本文通过温度调控将SnO_(2)量子点或Sn纳米团簇均匀负载在中空多孔碳纳米纤维(HPCNFs)的内部,用于制备个性化定制锂离子电池.一方面,高度互联的碳纳米纤维形成三维网络,加快了电子传输,提高了电子导电性.另一方面,中空多孔结构缩短了锂离子传输路径,促进了锂离子的快速扩散,同时,抑制了Sn和SnO_(2)的体积膨胀.由于具有较高的锂离子吸附性能以及快的离子扩散速率,低碳化温度下(450℃)合成的SnO_(2)@HPCNFs复合电极在0.1 A g^(-1)的小电流密度下具有较高的放电比容量(899.3 mA h g~(-1)).此外,由于在大的电流密度下,Sn的大孔结构能够储存更多的锂离子,以及具有较高的电子电导率,因此,高碳化温度下(850℃)制备的Sn@HPCNFs复合电极展现出优异的快充性能,同时,在5 A g^(-1)(~10 C)的高电流密度下具有238.8 mA h g^(-1)的放电容量.本文通过调控碳化温度来研究SnO_(2)和Sn电极之间的电化学行为,为构建高性能储能器件提供了新的思路.
基金financially supported by the National Natural Science Foundation of China(52171164 and 51790484)the National Key Laboratory of Science and Technology on Materials under Shock and Impact(WDZC2022-13)+2 种基金the Natural Science Foundation of Liaoning Province(2021-MS-009)China Manned Space Engineering(YYMT1201EXP08)the Youth Innovation Promotion Association CAS(2021188)。