The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera...The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable.展开更多
In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an ada...In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an adaptive temporal-spatial information fusion model is proposed.Firstly,an adaptive evaluation correction mechanism is constructed by the evidence distance and Deng entropy,which realizes the credibility discrimination and adaptive correction of the spatial evidence.Secondly,the credibility decay operator is introduced to obtain the dynamic credibility of temporal evidence.Finally,the sequential combination of temporal-spatial evidences is achieved by Shafer’s discount criterion and Dempster’s combination rule.The simulation results show that the proposed method not only considers the dynamic and sequential characteristics of the temporal-spatial evidences com-bination,but also has a strong conflict information processing capability,which provides a new refer-ence for the field of temporal-spatial information fusion.展开更多
基金the National Natural Science Foundation of China(No.61976080)the Academic Degrees&Graduate Education Reform Project of Henan Province(No.2021SJGLX195Y)+1 种基金the Teaching Reform Research and Practice Project of Henan Undergraduate Universities(No.2022SYJXLX008)the Key Project on Research and Practice of Henan University Graduate Education and Teaching Reform(No.YJSJG2023XJ006)。
文摘The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable.
基金the National Natural Science Foundation of China(No.61976080)the Key Project on Research and Practice of Henan University Graduate Education and Teaching Reform(YJSJG2023XJ006)+1 种基金the Key Research and Development Projects of Henan Province(231111212500)the Henan University Graduate Education Innovation and Quality Improvement Program(SYLKC2023016).
文摘In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an adaptive temporal-spatial information fusion model is proposed.Firstly,an adaptive evaluation correction mechanism is constructed by the evidence distance and Deng entropy,which realizes the credibility discrimination and adaptive correction of the spatial evidence.Secondly,the credibility decay operator is introduced to obtain the dynamic credibility of temporal evidence.Finally,the sequential combination of temporal-spatial evidences is achieved by Shafer’s discount criterion and Dempster’s combination rule.The simulation results show that the proposed method not only considers the dynamic and sequential characteristics of the temporal-spatial evidences com-bination,but also has a strong conflict information processing capability,which provides a new refer-ence for the field of temporal-spatial information fusion.