在移动机器人路径规划中需要考虑距离约束和时间约束,同时,为了使机器人在能量补给不足的情况下更高效地执行更多的任务,降低运动过程中的能耗变得尤为重要。兼顾考虑机器人对降低能耗和路径规划效率两方面的需求,本文提出了一种基于改...在移动机器人路径规划中需要考虑距离约束和时间约束,同时,为了使机器人在能量补给不足的情况下更高效地执行更多的任务,降低运动过程中的能耗变得尤为重要。兼顾考虑机器人对降低能耗和路径规划效率两方面的需求,本文提出了一种基于改进AD*(Anytime dynamic A*)算法的移动机器人低能耗最优路径规划方法。首先,通过构建机器人动力学模型及其在运动过程中的能耗模型,实现对路径的能耗计算。结合机器人运动学模型,采用基于采样的模型预测算法(Sample based model predictive optimization,SBMPO)生成优化轨迹簇。然后,改进AD*算法,将距离成本和能耗成本融入搜索节点的评估函数,根据轨迹簇中的节点连接关系和环境地图进行在线规划,以获得能耗最优的路径。最后,通过设计仿真测试场景,将所提出的能耗最优路径规划方法与距离最优规划方法进行规划结果对比,验证了算法的有效性。展开更多
文摘在移动机器人路径规划中需要考虑距离约束和时间约束,同时,为了使机器人在能量补给不足的情况下更高效地执行更多的任务,降低运动过程中的能耗变得尤为重要。兼顾考虑机器人对降低能耗和路径规划效率两方面的需求,本文提出了一种基于改进AD*(Anytime dynamic A*)算法的移动机器人低能耗最优路径规划方法。首先,通过构建机器人动力学模型及其在运动过程中的能耗模型,实现对路径的能耗计算。结合机器人运动学模型,采用基于采样的模型预测算法(Sample based model predictive optimization,SBMPO)生成优化轨迹簇。然后,改进AD*算法,将距离成本和能耗成本融入搜索节点的评估函数,根据轨迹簇中的节点连接关系和环境地图进行在线规划,以获得能耗最优的路径。最后,通过设计仿真测试场景,将所提出的能耗最优路径规划方法与距离最优规划方法进行规划结果对比,验证了算法的有效性。