We report experimental discovery of tantalum polyhydride superconductor.It was synthesized under highpressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating ...We report experimental discovery of tantalum polyhydride superconductor.It was synthesized under highpressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating techniques.The superconductivity was investigated via resistance measurements at pressures.The highest superconducting transition temperature T_(c)was found to be~30 K at 197 GPa in the sample that was synthesized at the same pressure with~2000 K heating.The transitions are shifted to low temperature upon applying magnetic fields that support the superconductivity nature.The upper critical field at zero temperatureμ_0H_(c2)(0)of the superconducting phase is estimated to be~20 T that corresponds to Ginzburg-Landau coherent length~40 A.Our results suggest that the superconductivity may arise from 143d phase of TaH_(3).It is,for the first time to our best knowledge,experimental realization of superconducting hydrides for the VB group of transition metals.展开更多
The coming Big Data Era requires progress in storage and computing technologies.As an emerging memory technology,Resistive RAM(RRAM)has shown its potential in the next generation high-density storage and neuromorphic ...The coming Big Data Era requires progress in storage and computing technologies.As an emerging memory technology,Resistive RAM(RRAM)has shown its potential in the next generation high-density storage and neuromorphic computing applications,which extremely demand low switching voltage and power consumption.In this work,a 10 nm-thick amorphous GeS_(2)thin film was utilized as the functional layer of RRAM in a combination with Ag and Pt electrodes.The structure and memory performance of the GeS_(2)-based RRAM device was characterized-it presents high on/off ratio,fast switching time,ultralow switching voltage(0.15 V)and power consumption(1.0 pJ and 0.56 pJ for PROGRAM and ERASE operations,respectively).We attribute these competitive memory characteristics to Ag doping phenomena and subsequent formation of Ag nano-islands in the functional layer that occurs due to diffusion of Ag from electrode into the GeS_(2)thin film.These properties enable applications of GeS_(2)for low energy RRAM device.展开更多
Spawned by fast-paced progress in new materials and integrate circuit technology,the past two decades have witnessed tremendous development of humanoid robots for both scientific and commercial purposes,e.g.emergency ...Spawned by fast-paced progress in new materials and integrate circuit technology,the past two decades have witnessed tremendous development of humanoid robots for both scientific and commercial purposes,e.g.emergency response and daily life assistant.At the root of this trend are the increasing research interests and cooperation opportunities across different laboratories and countries.The application-driven requirements of high effectiveness and reliability of humanoid robots led intensive research and development in humanoid locomotion and control theories.In spite of the progress in the area,challenges such as unnatural locomotion control,inefficient multi-motion planning,and relatively slow disturbances recovery set further requirements for the next generation of humanoid robots.Therefore,the purpose of this work is to review the current development of highly representative bipedal humanoid robots and discuss the potential to move the ideas and models forward from laboratory settings into the real world.To this end,we also review the current clinical understanding of the walking and running dynamics to make the robot more human-like.展开更多
Estimating surface settlement induced by excavation construction is an indispensable task in tunneling,particularly for earth pressure balance(EPB)shield machines.In this study,predictive models for assessing surface ...Estimating surface settlement induced by excavation construction is an indispensable task in tunneling,particularly for earth pressure balance(EPB)shield machines.In this study,predictive models for assessing surface settlement caused by EPB tunneling were established based on extreme gradient boosting(XGBoost),artificial neural network,support vector machine,and multivariate adaptive regression spline.Datasets from three tunnel construction projects in Singapore were used,with main input parameters of cover depth,advance rate,earth pressure,mean standard penetration test(SPT)value above crown level,mean tunnel SPT value,mean moisture content,mean soil elastic modulus,and grout pressure.The performances of these soft computing models were evaluated by comparing predicted deformation with measured values.Results demonstrate the acceptable accuracy of the model in predicting ground settlement,while XGBoost demonstrates a slightly higher accuracy.In addition,the ensemble method of XGBoost is more computationally efficient and can be used as a reliable alternative in solving multivariate nonlinear geo-engineering problems.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
The Lobster Eye Imager for Astronomy(LEIA),a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe mission,was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on20...The Lobster Eye Imager for Astronomy(LEIA),a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe mission,was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on2022 July 27.In this paper,we introduce the design and on-ground test results of the LEIA instrument.Using stateof-the-art Micro-Pore Optics(MPO),a wide field of view of 346 square degrees(18.6°×18.6°)of the X-ray imager is realized.An optical assembly composed of 36 MPO chips is used to focus incident X-ray photons,and four large-format complementary metal-oxide semiconductor(CMOS)sensors,each of size 6 cm×6 cm,are used as the focal plane detectors.The instrument has an angular resolution of 4’-8’(in terms of FWHM)for the central focal spot of the point-spread function,and an effective area of 2-3 cm^(2) at 1 keV in essentially all the directions within the field of view.The detection passband is 0.5-4 keV in soft X-rays and the sensitivity is2-3×10^(-11) erg s^(-1) cm^(-2)(about 1 milliCrab)with a 1000 s observation.The total weight of LEIA is 56 kg and the power is 85 W.The satellite,with a design lifetime of 2 yr,operates in a Sun-synchronous orbit of 500 km with an orbital period of 95 minutes.LEIA is paving the way for future missions by verifying in flight the technologies of both novel focusing imaging optics and CMOS sensors for X-ray observation,and by optimizing the working setups of the instrumental parameters.In addition,LEIA is able to carry out scientific observations to find new transients and to monitor known sources in the soft X-ray band,albeit with limited useful observing time available.展开更多
The basic design principles and parameters of GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are reviewed.Furthermore new research directions,devices and applications suited for QWIPs are discussed.These incl...The basic design principles and parameters of GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are reviewed.Furthermore new research directions,devices and applications suited for QWIPs are discussed.These include monolithic integration of QWIPs with GaAs based electronic and optoelectronic devices,high frequency and high speed QWIPs and applications,multicolor and multispectral detectors,and p-type QWIPs.展开更多
X80 pipeline steel plates were friction stir welded(FSW)under air,water,liquid CO2+water,and liquid CO2 cooling conditions,producing defect-free welds.The microstructural evolution and mechanical properties of these F...X80 pipeline steel plates were friction stir welded(FSW)under air,water,liquid CO2+water,and liquid CO2 cooling conditions,producing defect-free welds.The microstructural evolution and mechanical properties of these FSW joints were studied.Coarse granular bainite was observed in the nugget zone(NZ)under air cooling,and lath bainite and lath martensite increased signifi cantly as the cooling medium temperature reduced.In particular,under the liquid CO2 cooling condition,a dual phase structure of lath martensite and fi ne ferrite appeared in the NZ.Compared to the case under air cooling,a strong shear texture was identifi ed in the NZs under other rapid cooling conditions,because the partial deformation at elevated temperature was retained through higher cooling rates.Under liquid CO2 cooling,the highest transverse tensile strength and elongation of the joint reached 92%and 82%of those of the basal metal(BM),respectively,due to the weak tempering softening.A maximum impact energy of up to 93%of that of the BM was obtained in the NZ under liquid CO2 cooling,which was attributed to the operation of the dual phase of lath martensite and fi ne ferrite.展开更多
Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The m...Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.展开更多
Thispaper proposed a new methodof producing Ceramic/ Metalfunctionally gradient mate rialby electroless platingtechnique. The experimentof producing SiC/ Ni PFGM wascar ried out with self made electroless plating ...Thispaper proposed a new methodof producing Ceramic/ Metalfunctionally gradient mate rialby electroless platingtechnique. The experimentof producing SiC/ Ni PFGM wascar ried out with self made electroless plating facilities. The results show that the thickness of FGMcoating andthegradientdistribution ofcompositioncanbecontrolled byoptimizingelec trolessplating technology and changing the parameters such as plating time, the additionspeed and concentration of SiCparticles. Analysisdemonstratesthatthereisastrongrelation ship amongthe SiCcontent,the microstructureandthe mechanicalproperty ofthe FGM.展开更多
Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the...Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the properties of ultrahigh-purity copper has been rarely reported and the exact structural arrangements of Bi atoms at different GBs remain largely unclear.In this study,we investigated the influ-ence of trace amounts of Bi(50-300 wt ppm)on the ductility of an ultrahigh-purity copper(99.99999%)in the range of room temperature to 900°C.The tensile results show that the addition of Bi seriously damages the ductility of the ultrahigh-purity copper at temperatures of 450-900°C,which is due to the GB segregation of Bi.On this basis,such a segregation behavior at different types of GBs,including high and low angle GBs(HAGBs/LAGBs),and twin boundaries(TBs),via the scanning electron microscope-electron backscattered diffraction(SEM-EBSD)and aberration-corrected scanning transmission electron microscope(AC-STEM)investigations,combined with the first-principles calculations were systematically studied.The atomistic characterizations demonstrate an anisotropic Bi segregation,where severe enrich-ment of Bi atoms typically occurs at the HAGBs,while the absence of Bi adsorption prevails at LAGBs or TBs.In particular,the segregated Bi at random HAGBs exhibited the directional bilayer adsorption,while the special symmetrical7 HAGB presented a unique Bi-rich cluster superstructure.Our findings pro-vide a comprehensive experimental and computational understanding on the atomic-scale segregation of impurities in metallic materials.展开更多
Owing to its high heat storage capacity and fast heat transfer rate,packed bed latent heat storage(LHS)is considered as a promising method to store thermal energy.In a packed bed,the wall effect can impact the packing...Owing to its high heat storage capacity and fast heat transfer rate,packed bed latent heat storage(LHS)is considered as a promising method to store thermal energy.In a packed bed,the wall effect can impact the packing arrangement of phase change material(PCM)capsules,inducing radial porosity oscillation.In this study,an actual-arrangement-based three-dimensional packed bed LHS model was built to consider the radial porosity oscillation.Its fluid flow and heat transfer were analyzed.With different cylindrical sub-surfaces intercepted along the radial direction in the packed bed,the corresponding relationships between the arrangement of capsules and porosity oscillation were identified.The oscillating distribution of radial porosity led to a non-uniform distribution of heat transfer fluid(HTF)velocity.As a result,radial temperature distributions and liquid fraction distributions of PCMs were further affected.The effects of different dimensionless parameters(e.g.,tube-to-capsule diameter ratio,Reynolds number,and Stefan number)on the radial characteristics of HTF and PCMs were discussed.The results showed that different diameter ratios correspond to different radial porosity distributions.Further,with an increase in diameter ratio,HTF velocity varies significantly in the near wall region while the non-uniformity of HTF velocity in the center region will decrease.The Reynolds and Stefan numbers slightly impact the relative velocity distribution of the HTF-while higher Reynolds numbers can lead to a proportional improvement of velocity,an increase in Stefan number can promote heat storage of the packed bed LHS system.展开更多
The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results...The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results are as follows: (1) The microstruc-ture of the ZA alloy lines is the parallel directional dendritic columnar crystal. Every dendritic crystal of eutectic alloy ZA5 was composed of many layer eutectic β and η phases. The micro structure of hypereutectic ZA alloys is primary dendritic crystal and interdendritic eutectic structure. The primary phase of ZA8 and ZA12 is β, among them, but the primary phase of ZA22 and ZA27 is a. (2) Through the test to the as-cast ZA alloy lines made in continuous casting by heated mold, it is found that the tensile strength and hardness increase greatly, but the elongation decreases. With the increase of aluminum amount from ZA 5 to ZA 12, ZA22 and ZA27, the tensile strength increases gradually. ZA27 has the best comprehensive mechanical properties in these four kinds of ZA alloys. (3) Heat treatment can decrease the dendritic segregation and improve the elongation of ZA alloy, but make their strength decrease slightly.展开更多
The reverse dual-rotation friction stir welding(RDR-FSW) has the capability to adjust the heat generation because of the separately designed tool shoulder and tool pin.The welding torque exerted on the workpiece by th...The reverse dual-rotation friction stir welding(RDR-FSW) has the capability to adjust the heat generation because of the separately designed tool shoulder and tool pin.The welding torque exerted on the workpiece by the reversely rotating shoulder is opposite to that exerted by the rotating tool pin,so the total welding torque is reduced,which is beneficial to reducing the clamping requirement of workpieces.In the present paper,a RDR-FSW joint was welded in a condition similar to the optimal welding condition of conventional FSW,and microstructures in various zones were investigated by comparison,aiming to highlight effects of the reversely rotating assisted shoulder.Due to the heat conduction of the middle cylinder and the bottom end cover on which the assisted shoulder was machined,the thermal effect of RDR-FSW was smaller than that of the conventional FSW.Moreover,the effect of assisted shoulder on the plastic flow or deformation of material or was constrained in a thin layer near the weld top surface,and thus the flow of material especially along the thickness direction was clearly decreased in the RDR-FSW.In the heat-affected zone(HAZ),the precipitate coarsening was the main evolution and was completed through the dissolution of small precipitates and the continuous growth of large precipitates.By contrast,the dissolution degree of precipitates increased significantly in the thermomechanically affected zone(TMAZ),and a small amount of original meta-stable precipitates transformed to block-shaped stable precipitates.Precipitate evolutions in the shoulder affected zone(SAZ)and the weld nugget zone were similar,i.e.the majority of original meta-stable precipitates dissolved into the matrix and the remainder transformed to stable precipitates,though the dissolution degree was greater in the SAZ.Compared with the conventional FSW joint,the coarsening degrees of precipitates in the HAZ and TMAZ of RDR-FSW joint were much smaller,as well as the dissolution degrees of precipitates in all four specified zones.展开更多
This study presents an electromechanical engineering model for the analysis of the large deflection curves of ionic polymer-metal composite(IPMC)cantilever actuators under direct current(DC)voltages.In this paper,the ...This study presents an electromechanical engineering model for the analysis of the large deflection curves of ionic polymer-metal composite(IPMC)cantilever actuators under direct current(DC)voltages.In this paper,the longitudinal normal strain performance of the material was investigated using digital image correlation on a micro-scale.The deflection of the actuator is analytically obtained with the application of an elliptic integration method based on the relationship between strain gradient and excitation voltage,and the minimum excitation voltage is derived based on the assumption that the actuators have small deformations.The validity of the electromechanical model is then justified with the experimental results obtained from Pt-and Ag-IPMC actuators at various excitation voltages.The findings of this study confirm that the introduced electromechanical model can accurately describe the large nonlinear deflection behavior of IPMC actuators.展开更多
We use femtosecond time-resolved optical reflectivity to study the photoexcited quasiparticle(QP)dynamics in the iron-based 112 type superconducting(SC)samples Ca0.82La0.18Fe1-xNixAs2,with x=0 and 0.024.In the parent ...We use femtosecond time-resolved optical reflectivity to study the photoexcited quasiparticle(QP)dynamics in the iron-based 112 type superconducting(SC)samples Ca0.82La0.18Fe1-xNixAs2,with x=0 and 0.024.In the parent sample,a fast and a slow relaxation emerge at temperatures below the magnetic-structure(MS)transition Tms≈50 K and the SC transition Tc≈33 K,respectively.The latter obviously corresponds to an SC QP dynamics,which is further confirmed in the x=0.024 sample with Tc≈25 K.The former suggests that a partial of photoexcited QP relaxation through a pesudogap(PG)channel,which is absent in the doped x=0.024 sample without the MS transition.展开更多
Porthole dies are important tools in extrusion process to produce hollow sections and the life of the dies counts for the cost of products. In this work, the finite element method was adopted to analyze a particular p...Porthole dies are important tools in extrusion process to produce hollow sections and the life of the dies counts for the cost of products. In this work, the finite element method was adopted to analyze a particular porthole die to produce hollow rectangle sections which are widely used in construction. The upper die was mainly studied. Because it is symmetrical, a quarter of the die was analyzed. The upper die was divided into 2199 elements with 3018 nodes. Elements were produced by four steps and the geometric shape of the die could be well simulated. The boundary condition was given according to the shape of the welding chamber and an empirical average extrusion stress was adopted, which was 210N/mm 2. Three-dimensional equivalent stresses were received. The original porthole die studied had obvious stress concentration and the stress distribution was very inhomogeneous, which would heavily affect the die life. A new design was proposed in which the portholes were rearranged and their shape and dimension were changed. According to the finite element analysis, the stress distribution of the improved die was quite homogeneous and the stress concentration was lessened.展开更多
基金the National Natural Science Foundation of China(Grant No.11921004)the National Key R&D Program of China(Grant Nos.2021YFA1401800 and 2022YFA1402301)+2 种基金Chinese Academy of Sciences(Grant No.XDB33010200)supported by the National Science Foundation Earth Sciences(EAR 1634415)used resources of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory(Grant No.DEAC02-06CH11357)。
文摘We report experimental discovery of tantalum polyhydride superconductor.It was synthesized under highpressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating techniques.The superconductivity was investigated via resistance measurements at pressures.The highest superconducting transition temperature T_(c)was found to be~30 K at 197 GPa in the sample that was synthesized at the same pressure with~2000 K heating.The transitions are shifted to low temperature upon applying magnetic fields that support the superconductivity nature.The upper critical field at zero temperatureμ_0H_(c2)(0)of the superconducting phase is estimated to be~20 T that corresponds to Ginzburg-Landau coherent length~40 A.Our results suggest that the superconductivity may arise from 143d phase of TaH_(3).It is,for the first time to our best knowledge,experimental realization of superconducting hydrides for the VB group of transition metals.
基金This work was supported by the NSFC/RGC Joint Research Scheme(Grant No.N-PolyU15300619),The Hong Kong Polytechnic University Strategic Development Special Project(Grant No.1-ZVGH)and internal grant(Grant No.G-UAEZ).N.L.is also grateful for the financial support from the Hong Kong PhD fellowship scheme.
文摘The coming Big Data Era requires progress in storage and computing technologies.As an emerging memory technology,Resistive RAM(RRAM)has shown its potential in the next generation high-density storage and neuromorphic computing applications,which extremely demand low switching voltage and power consumption.In this work,a 10 nm-thick amorphous GeS_(2)thin film was utilized as the functional layer of RRAM in a combination with Ag and Pt electrodes.The structure and memory performance of the GeS_(2)-based RRAM device was characterized-it presents high on/off ratio,fast switching time,ultralow switching voltage(0.15 V)and power consumption(1.0 pJ and 0.56 pJ for PROGRAM and ERASE operations,respectively).We attribute these competitive memory characteristics to Ag doping phenomena and subsequent formation of Ag nano-islands in the functional layer that occurs due to diffusion of Ag from electrode into the GeS_(2)thin film.These properties enable applications of GeS_(2)for low energy RRAM device.
文摘Spawned by fast-paced progress in new materials and integrate circuit technology,the past two decades have witnessed tremendous development of humanoid robots for both scientific and commercial purposes,e.g.emergency response and daily life assistant.At the root of this trend are the increasing research interests and cooperation opportunities across different laboratories and countries.The application-driven requirements of high effectiveness and reliability of humanoid robots led intensive research and development in humanoid locomotion and control theories.In spite of the progress in the area,challenges such as unnatural locomotion control,inefficient multi-motion planning,and relatively slow disturbances recovery set further requirements for the next generation of humanoid robots.Therefore,the purpose of this work is to review the current development of highly representative bipedal humanoid robots and discuss the potential to move the ideas and models forward from laboratory settings into the real world.To this end,we also review the current clinical understanding of the walking and running dynamics to make the robot more human-like.
基金supported by the National Natural Science Foundation of China(No.51608071)Technology Plan Project(2019-0045).
文摘Estimating surface settlement induced by excavation construction is an indispensable task in tunneling,particularly for earth pressure balance(EPB)shield machines.In this study,predictive models for assessing surface settlement caused by EPB tunneling were established based on extreme gradient boosting(XGBoost),artificial neural network,support vector machine,and multivariate adaptive regression spline.Datasets from three tunnel construction projects in Singapore were used,with main input parameters of cover depth,advance rate,earth pressure,mean standard penetration test(SPT)value above crown level,mean tunnel SPT value,mean moisture content,mean soil elastic modulus,and grout pressure.The performances of these soft computing models were evaluated by comparing predicted deformation with measured values.Results demonstrate the acceptable accuracy of the model in predicting ground settlement,while XGBoost demonstrates a slightly higher accuracy.In addition,the ensemble method of XGBoost is more computationally efficient and can be used as a reliable alternative in solving multivariate nonlinear geo-engineering problems.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金supported by the Einstein Probe project,a mission in the Strategic Priority Program on Space Science of CAS(grant Nos.XDA15310000,XDA15052100)in part been supported by the European Union’s Horizon 2020 Program under the AHEAD2020 project(grant No.871158).
文摘The Lobster Eye Imager for Astronomy(LEIA),a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe mission,was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on2022 July 27.In this paper,we introduce the design and on-ground test results of the LEIA instrument.Using stateof-the-art Micro-Pore Optics(MPO),a wide field of view of 346 square degrees(18.6°×18.6°)of the X-ray imager is realized.An optical assembly composed of 36 MPO chips is used to focus incident X-ray photons,and four large-format complementary metal-oxide semiconductor(CMOS)sensors,each of size 6 cm×6 cm,are used as the focal plane detectors.The instrument has an angular resolution of 4’-8’(in terms of FWHM)for the central focal spot of the point-spread function,and an effective area of 2-3 cm^(2) at 1 keV in essentially all the directions within the field of view.The detection passband is 0.5-4 keV in soft X-rays and the sensitivity is2-3×10^(-11) erg s^(-1) cm^(-2)(about 1 milliCrab)with a 1000 s observation.The total weight of LEIA is 56 kg and the power is 85 W.The satellite,with a design lifetime of 2 yr,operates in a Sun-synchronous orbit of 500 km with an orbital period of 95 minutes.LEIA is paving the way for future missions by verifying in flight the technologies of both novel focusing imaging optics and CMOS sensors for X-ray observation,and by optimizing the working setups of the instrumental parameters.In addition,LEIA is able to carry out scientific observations to find new transients and to monitor known sources in the soft X-ray band,albeit with limited useful observing time available.
文摘The basic design principles and parameters of GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are reviewed.Furthermore new research directions,devices and applications suited for QWIPs are discussed.These include monolithic integration of QWIPs with GaAs based electronic and optoelectronic devices,high frequency and high speed QWIPs and applications,multicolor and multispectral detectors,and p-type QWIPs.
基金financially supported by the National Nature Science Foundation of China(Nos.51774085 and 51671190)the Fundamental Research for the Chinese Central Universities(No.N170704013)the National Key Research and Development Program of China(No.2017YFB0305004).
文摘X80 pipeline steel plates were friction stir welded(FSW)under air,water,liquid CO2+water,and liquid CO2 cooling conditions,producing defect-free welds.The microstructural evolution and mechanical properties of these FSW joints were studied.Coarse granular bainite was observed in the nugget zone(NZ)under air cooling,and lath bainite and lath martensite increased signifi cantly as the cooling medium temperature reduced.In particular,under the liquid CO2 cooling condition,a dual phase structure of lath martensite and fi ne ferrite appeared in the NZ.Compared to the case under air cooling,a strong shear texture was identifi ed in the NZs under other rapid cooling conditions,because the partial deformation at elevated temperature was retained through higher cooling rates.Under liquid CO2 cooling,the highest transverse tensile strength and elongation of the joint reached 92%and 82%of those of the basal metal(BM),respectively,due to the weak tempering softening.A maximum impact energy of up to 93%of that of the BM was obtained in the NZ under liquid CO2 cooling,which was attributed to the operation of the dual phase of lath martensite and fi ne ferrite.
基金supported by the National Natural Science Foundation of China (Grand No. 50872032)the financial support from the Hundred Talents Program of the Chinese Academy of Sciencesthe National Basic Research Program of China(Grant No. 2010CB631006)
文摘Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.
文摘Thispaper proposed a new methodof producing Ceramic/ Metalfunctionally gradient mate rialby electroless platingtechnique. The experimentof producing SiC/ Ni PFGM wascar ried out with self made electroless plating facilities. The results show that the thickness of FGMcoating andthegradientdistribution ofcompositioncanbecontrolled byoptimizingelec trolessplating technology and changing the parameters such as plating time, the additionspeed and concentration of SiCparticles. Analysisdemonstratesthatthereisastrongrelation ship amongthe SiCcontent,the microstructureandthe mechanicalproperty ofthe FGM.
基金the National Natu-ral Science Foundation of China(Nos.52071133,51904090 and 52071284)the Henan Province Science and Technology Tackling Key Problems Project(No.222102230001)+2 种基金the Henan Province Young Talent Lifting Engineering Project(No.2021HYTP018)the Central Plain Scholar Workstation Project(No.224400510025)the Key R&D projects of Henan Province(No.221111230600).
文摘Bismuth(Bi),as an impurity element in copper and copper-based alloys,usually has a strong tendency of grain boundary(GB)segregation,which depends on the GB characters.However,the influence of such a segregation on the properties of ultrahigh-purity copper has been rarely reported and the exact structural arrangements of Bi atoms at different GBs remain largely unclear.In this study,we investigated the influ-ence of trace amounts of Bi(50-300 wt ppm)on the ductility of an ultrahigh-purity copper(99.99999%)in the range of room temperature to 900°C.The tensile results show that the addition of Bi seriously damages the ductility of the ultrahigh-purity copper at temperatures of 450-900°C,which is due to the GB segregation of Bi.On this basis,such a segregation behavior at different types of GBs,including high and low angle GBs(HAGBs/LAGBs),and twin boundaries(TBs),via the scanning electron microscope-electron backscattered diffraction(SEM-EBSD)and aberration-corrected scanning transmission electron microscope(AC-STEM)investigations,combined with the first-principles calculations were systematically studied.The atomistic characterizations demonstrate an anisotropic Bi segregation,where severe enrich-ment of Bi atoms typically occurs at the HAGBs,while the absence of Bi adsorption prevails at LAGBs or TBs.In particular,the segregated Bi at random HAGBs exhibited the directional bilayer adsorption,while the special symmetrical7 HAGB presented a unique Bi-rich cluster superstructure.Our findings pro-vide a comprehensive experimental and computational understanding on the atomic-scale segregation of impurities in metallic materials.
基金This work is supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51521004)the National Natural Science Foundation of China(51906150).
文摘Owing to its high heat storage capacity and fast heat transfer rate,packed bed latent heat storage(LHS)is considered as a promising method to store thermal energy.In a packed bed,the wall effect can impact the packing arrangement of phase change material(PCM)capsules,inducing radial porosity oscillation.In this study,an actual-arrangement-based three-dimensional packed bed LHS model was built to consider the radial porosity oscillation.Its fluid flow and heat transfer were analyzed.With different cylindrical sub-surfaces intercepted along the radial direction in the packed bed,the corresponding relationships between the arrangement of capsules and porosity oscillation were identified.The oscillating distribution of radial porosity led to a non-uniform distribution of heat transfer fluid(HTF)velocity.As a result,radial temperature distributions and liquid fraction distributions of PCMs were further affected.The effects of different dimensionless parameters(e.g.,tube-to-capsule diameter ratio,Reynolds number,and Stefan number)on the radial characteristics of HTF and PCMs were discussed.The results showed that different diameter ratios correspond to different radial porosity distributions.Further,with an increase in diameter ratio,HTF velocity varies significantly in the near wall region while the non-uniformity of HTF velocity in the center region will decrease.The Reynolds and Stefan numbers slightly impact the relative velocity distribution of the HTF-while higher Reynolds numbers can lead to a proportional improvement of velocity,an increase in Stefan number can promote heat storage of the packed bed LHS system.
文摘The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results are as follows: (1) The microstruc-ture of the ZA alloy lines is the parallel directional dendritic columnar crystal. Every dendritic crystal of eutectic alloy ZA5 was composed of many layer eutectic β and η phases. The micro structure of hypereutectic ZA alloys is primary dendritic crystal and interdendritic eutectic structure. The primary phase of ZA8 and ZA12 is β, among them, but the primary phase of ZA22 and ZA27 is a. (2) Through the test to the as-cast ZA alloy lines made in continuous casting by heated mold, it is found that the tensile strength and hardness increase greatly, but the elongation decreases. With the increase of aluminum amount from ZA 5 to ZA 12, ZA22 and ZA27, the tensile strength increases gradually. ZA27 has the best comprehensive mechanical properties in these four kinds of ZA alloys. (3) Heat treatment can decrease the dendritic segregation and improve the elongation of ZA alloy, but make their strength decrease slightly.
基金financially supported by the National Natural Science Foundation of China(No.51175117)the National Science and Technology Major Project of China(No.2010ZX04007-011)the National Basic Research Program of China("973 Program",No.2010CB731704)
文摘The reverse dual-rotation friction stir welding(RDR-FSW) has the capability to adjust the heat generation because of the separately designed tool shoulder and tool pin.The welding torque exerted on the workpiece by the reversely rotating shoulder is opposite to that exerted by the rotating tool pin,so the total welding torque is reduced,which is beneficial to reducing the clamping requirement of workpieces.In the present paper,a RDR-FSW joint was welded in a condition similar to the optimal welding condition of conventional FSW,and microstructures in various zones were investigated by comparison,aiming to highlight effects of the reversely rotating assisted shoulder.Due to the heat conduction of the middle cylinder and the bottom end cover on which the assisted shoulder was machined,the thermal effect of RDR-FSW was smaller than that of the conventional FSW.Moreover,the effect of assisted shoulder on the plastic flow or deformation of material or was constrained in a thin layer near the weld top surface,and thus the flow of material especially along the thickness direction was clearly decreased in the RDR-FSW.In the heat-affected zone(HAZ),the precipitate coarsening was the main evolution and was completed through the dissolution of small precipitates and the continuous growth of large precipitates.By contrast,the dissolution degree of precipitates increased significantly in the thermomechanically affected zone(TMAZ),and a small amount of original meta-stable precipitates transformed to block-shaped stable precipitates.Precipitate evolutions in the shoulder affected zone(SAZ)and the weld nugget zone were similar,i.e.the majority of original meta-stable precipitates dissolved into the matrix and the remainder transformed to stable precipitates,though the dissolution degree was greater in the SAZ.Compared with the conventional FSW joint,the coarsening degrees of precipitates in the HAZ and TMAZ of RDR-FSW joint were much smaller,as well as the dissolution degrees of precipitates in all four specified zones.
基金This work was supported by the National Natural Science Foundation of China(Grants 11372132 and 11502109).
文摘This study presents an electromechanical engineering model for the analysis of the large deflection curves of ionic polymer-metal composite(IPMC)cantilever actuators under direct current(DC)voltages.In this paper,the longitudinal normal strain performance of the material was investigated using digital image correlation on a micro-scale.The deflection of the actuator is analytically obtained with the application of an elliptic integration method based on the relationship between strain gradient and excitation voltage,and the minimum excitation voltage is derived based on the assumption that the actuators have small deformations.The validity of the electromechanical model is then justified with the experimental results obtained from Pt-and Ag-IPMC actuators at various excitation voltages.The findings of this study confirm that the introduced electromechanical model can accurately describe the large nonlinear deflection behavior of IPMC actuators.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51875009 and 51705006)the Key Project of Beijing Municipal Natural Science Foundation and Beijing Education Committee’s Science and Technology Plan(Grant Nos.KZ201710005004 and KZ201810005001)。
文摘We use femtosecond time-resolved optical reflectivity to study the photoexcited quasiparticle(QP)dynamics in the iron-based 112 type superconducting(SC)samples Ca0.82La0.18Fe1-xNixAs2,with x=0 and 0.024.In the parent sample,a fast and a slow relaxation emerge at temperatures below the magnetic-structure(MS)transition Tms≈50 K and the SC transition Tc≈33 K,respectively.The latter obviously corresponds to an SC QP dynamics,which is further confirmed in the x=0.024 sample with Tc≈25 K.The former suggests that a partial of photoexcited QP relaxation through a pesudogap(PG)channel,which is absent in the doped x=0.024 sample without the MS transition.
文摘Porthole dies are important tools in extrusion process to produce hollow sections and the life of the dies counts for the cost of products. In this work, the finite element method was adopted to analyze a particular porthole die to produce hollow rectangle sections which are widely used in construction. The upper die was mainly studied. Because it is symmetrical, a quarter of the die was analyzed. The upper die was divided into 2199 elements with 3018 nodes. Elements were produced by four steps and the geometric shape of the die could be well simulated. The boundary condition was given according to the shape of the welding chamber and an empirical average extrusion stress was adopted, which was 210N/mm 2. Three-dimensional equivalent stresses were received. The original porthole die studied had obvious stress concentration and the stress distribution was very inhomogeneous, which would heavily affect the die life. A new design was proposed in which the portholes were rearranged and their shape and dimension were changed. According to the finite element analysis, the stress distribution of the improved die was quite homogeneous and the stress concentration was lessened.