For real parameters αand β such that 0≤α 〈 1 〈β, we denote by S(α,β) the class of normalized analytic functions which satisfy the following two-sided inequality:where U denotes the open unit disk. We find ...For real parameters αand β such that 0≤α 〈 1 〈β, we denote by S(α,β) the class of normalized analytic functions which satisfy the following two-sided inequality:where U denotes the open unit disk. We find a sufficient condition for functions to be in the class S(α,β) and solve several radius problems related to other well-known function classes.展开更多
In this paper, we consider a new class CS*s,b of generalized close-to-starlike functions, which is defined by means of the Srivastava-Attiya operator Js,b involving the Hurwitz-Lerch Zeta function φ(z, s, a). Basi...In this paper, we consider a new class CS*s,b of generalized close-to-starlike functions, which is defined by means of the Srivastava-Attiya operator Js,b involving the Hurwitz-Lerch Zeta function φ(z, s, a). Basic results such as inclusion relations, coefficient inequalities and other interesting properties of this class are investigated. Relevant connections of some of the results presented here with those that were obtained in earlier investigations are pointed out briefly.展开更多
Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust ...Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust double hypergeometric function. The results presented in this article are based essentially upon the hypergeometric summation theorems of Kummer and Dixon.展开更多
In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integr...In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integral transform, which are established in this paper, in- clude (for example) existence theorem, Parseval-type relationship and inversion formula. The relationship between the new integral transform with the H-function and the H-transform are characterized by means of some integral identities. The introduced transform is also used to find solution to a certain differential equation. Some illustrative examples are also given.展开更多
In the present investigation, we consider two new general subclasses B∑m(T, λ; α)and B^∑m (τ λ;β) of Em consisting of analytic and m-fold symmetric bi-univalent functions in the open unit disk U. For functi...In the present investigation, we consider two new general subclasses B∑m(T, λ; α)and B^∑m (τ λ;β) of Em consisting of analytic and m-fold symmetric bi-univalent functions in the open unit disk U. For functions belonging to the two classes introduced here, we derive non-sharp estimates on the initial coefficients [a-~+ll and │a2+1│. Several connections to some of the earlier known results are also pointed out.展开更多
文摘For real parameters αand β such that 0≤α 〈 1 〈β, we denote by S(α,β) the class of normalized analytic functions which satisfy the following two-sided inequality:where U denotes the open unit disk. We find a sufficient condition for functions to be in the class S(α,β) and solve several radius problems related to other well-known function classes.
文摘In this paper, we consider a new class CS*s,b of generalized close-to-starlike functions, which is defined by means of the Srivastava-Attiya operator Js,b involving the Hurwitz-Lerch Zeta function φ(z, s, a). Basic results such as inclusion relations, coefficient inequalities and other interesting properties of this class are investigated. Relevant connections of some of the results presented here with those that were obtained in earlier investigations are pointed out briefly.
文摘Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust double hypergeometric function. The results presented in this article are based essentially upon the hypergeometric summation theorems of Kummer and Dixon.
文摘In the present paper, the authors introduce a new integral transform which yields a number of potentially useful (known or new) integral transfoms as its special cases. Many fundamental results about this new integral transform, which are established in this paper, in- clude (for example) existence theorem, Parseval-type relationship and inversion formula. The relationship between the new integral transform with the H-function and the H-transform are characterized by means of some integral identities. The introduced transform is also used to find solution to a certain differential equation. Some illustrative examples are also given.
文摘In the present investigation, we consider two new general subclasses B∑m(T, λ; α)and B^∑m (τ λ;β) of Em consisting of analytic and m-fold symmetric bi-univalent functions in the open unit disk U. For functions belonging to the two classes introduced here, we derive non-sharp estimates on the initial coefficients [a-~+ll and │a2+1│. Several connections to some of the earlier known results are also pointed out.