NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as o...NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as outstanding superelastic properties.Here,UFGed bulk Ti_(35)Zr_(15)Ni_(35)Cu_(15)NiTi-based SMA is successfully prepared via spark plasma sintering of amorphous ribbon precursor at different sintering temperatures,and microstructural evolution and superelastic properties are symmetrically investigated.It is found that its grain size ranges from UFG to micro-grain with increased sintering temperature regard-less of the predominant B2 matrix in all bulk samples.Interestingly,the orientation relationships between B2 matrix and nano-scale fcc(Ti,Zr)_(2)Ni precipitate evolve from coherent to incoherent.Consequently,the UFGed samples exhibit perfect superelasticity with the high recoverable strain of∼5.8%,the stable recov-ery rate above 99%,and the great critical stress inducing martensitic transformation higher than 1 GPa,far superior to the corresponding ones of suction-cast micro-grained TiZrNiCu SMAs.Fundamentally,the perfect superelasticity is attributed to the good resistance to dislocation slip or grain boundary slip by residual nano-scale amorphous phase or secondary phase of coherent and semi-coherent fcc(Ti,Zr)_(2)Ni precipitate.In addition,the gentle superelastic plateau is associated to the favorable transfer stress and the strong ability to accommodate dislocation movement,which is generated by the coherent interface between nano-scale fcc(Ti,Zr)_(2)Ni and UFGed B2 matrix.These results suggest that spark plasma sintering of amorphous alloy precursor is a feasible route to obtaining excellent superelasticity in NiTi-based SMAs.展开更多
Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional ...Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional argon(Ar).The N-NDFs were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.The grain sizes are of 8~10 nm in dimension.The N-NDF shows n-type behavior and the corresponding N-NDF/p-Si heterojunction diodes are realized with a high rectification ratio of 102 at^7.8 V,and the current density reaches to1.35 A/cm2 at forward voltage of 8.5 V.The findings suggest that fabricated by CH_4/H_2/N_2 without Ar,the N-NDFs and the related rectifying diodes are favorable for achieving high performance diamond-based optoelectronic devices.展开更多
In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grai...In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.展开更多
A new parallel Monte Carlo simulation method of secondary electron (SE) and back scattered electron images (BSE) of scanning electron microscopy (SEM) for a com plex geometric structure has been developed. This paper ...A new parallel Monte Carlo simulation method of secondary electron (SE) and back scattered electron images (BSE) of scanning electron microscopy (SEM) for a com plex geometric structure has been developed. This paper describes briefly the si mulation method and the modification to the conventional sampling method for the step length. Example simulation results have been obtained for several artifici al structures.展开更多
The spatial arrangement,distribution and morphology of Fe-bearing intermetallics in AA6082 alloys depends on the manufacturing process of the alloy and thus influences the macroscopic properties.Here,the microstructur...The spatial arrangement,distribution and morphology of Fe-bearing intermetallics in AA6082 alloys depends on the manufacturing process of the alloy and thus influences the macroscopic properties.Here,the microstructure of a near industrial scale casting AA6082 Al alloy fabricated by:(a)direct chill casting,(b)Al-5 Ti-1 B grain refiner addition and(c)intensive melt shearing has been investigated by threedimensional visualization using SEM-based serial ultra microtomy tomography.The formation sequence of phases in AA6082 alloys is generally categorized into four stages:formation ofα-Al grains,Fe-bearing intermetallics,Mg_(2)Si phase,and eutectic rosettes.Results of three-dimensional visualization of the microstructure indicated that TiBparticles not only could nucleate Fe-bearingβ-intermetallics,but also could provide substrate for the formation of Fe-bearingα-intermetallics and Mg_(2)Si.A further deep analysis reveals that the essential condition for the formation of secondary phases such as Fe-bearing intermetallics and Mg_(2)Si phase is the build-up of a supersaturated solute front at theα-Al solid-liquid interface irrespective of the specific nucleation site.In addition,the results indicate that grain refinement processing causes the severe interconnectivity of Fe-bearingα-intermetallics.However,the intensive melt shearing is a better manufacturing process because the intermetallics are more evenly distributed and refined than with the addition of the grain refiner,thereby improving the properties of the alloy.展开更多
The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is ...The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is very close in value to th e theoretical surface energy loss function in the lower energy loss region but g radually approaches the theoretical bulk energy loss function in the higher ener gy loss region. Moreover, the intensity corresponding to surface excitation in e ffective energy loss functions decreases with the increase of primary electron e nergy. These facts show that the present effective energy loss function describe s not only surface excitation but also bulk excitation. At last, REELS spectra s imulated by Monte Carlo method based on use of the effective energy loss functio ns has reproduced the experimental REELS spectra with considerable success.展开更多
Estimating surface settlement induced by excavation construction is an indispensable task in tunneling,particularly for earth pressure balance(EPB)shield machines.In this study,predictive models for assessing surface ...Estimating surface settlement induced by excavation construction is an indispensable task in tunneling,particularly for earth pressure balance(EPB)shield machines.In this study,predictive models for assessing surface settlement caused by EPB tunneling were established based on extreme gradient boosting(XGBoost),artificial neural network,support vector machine,and multivariate adaptive regression spline.Datasets from three tunnel construction projects in Singapore were used,with main input parameters of cover depth,advance rate,earth pressure,mean standard penetration test(SPT)value above crown level,mean tunnel SPT value,mean moisture content,mean soil elastic modulus,and grout pressure.The performances of these soft computing models were evaluated by comparing predicted deformation with measured values.Results demonstrate the acceptable accuracy of the model in predicting ground settlement,while XGBoost demonstrates a slightly higher accuracy.In addition,the ensemble method of XGBoost is more computationally efficient and can be used as a reliable alternative in solving multivariate nonlinear geo-engineering problems.展开更多
Magnesium alloys,a novel functional material for the fabrication of fracturing tools,are being paid more and more attentions recently due to their relatively high mechanical properties and fast dissolubility ability a...Magnesium alloys,a novel functional material for the fabrication of fracturing tools,are being paid more and more attentions recently due to their relatively high mechanical properties and fast dissolubility ability after fracturing.In this study,the novel extruded Mg-10Gd-3Y-0.3Zr-xNi alloys will be reported and their microstructure,mechanical and corrosion behaviors will be also studied.The results show that Ni contents influence phase precipitation behaviors.With adding 0.2 wt%Ni,a large amount of Zr_(7)Ni_(10)phases will be precipitated insidesα-Mg matrix,directly leading to degradation of strength and large corrosion rate.With further increasing Ni contents,the precipitation phases can be changed from Mg_(5)RE to 18R-LPSO structure,resulting in higher mechanical properties and faster corrosion rate.Moreover,adding Ni element also change the texture orientation by influencing the precipitation behavior of the alloys.The alloys invented in this paper have attained the highest compressive and tensile properties among all the reported dissoluble magnesium alloys.This work is beneficial in understanding the role of Ni in the magnesium alloys and provides more materials alternatives for the fabrication of dissoluble fracturing tools.展开更多
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto...A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.展开更多
There have been considerable advances in the understanding of species concepts in the genus Colletotrichum.This has lead to the need to carry out fresh surveys of Colletotrichum species associated with important hosts...There have been considerable advances in the understanding of species concepts in the genus Colletotrichum.This has lead to the need to carry out fresh surveys of Colletotrichum species associated with important hosts.Colletotrichum species are associated with Citrus plants as saprobes,important pre-harvest and post-harvest pathogens,as well as endophytes.In this study,a total of 312 Colletotrichum strains were isolated from leaves,shoots and fruits of cultivated Citrus and Fortunella species with or without disease symptoms across the main citrus production areas in China.The morphology of all strains were studied and multilocus(ACT,TUB2,CAL,GAPDH,GS,ITS)phylogeny established.Strains were from four important species complexes of Colletotrichum,namely C.gloeosporioides species complex,C.boninense species complex,C.acutatum species complex and a final group including C.truncatum,which was rare on Citrus species.The species belonging to the C.gloeosporioides species complex comprised C.gloeos porioides and C.fructicola,the C.boninense complex comprised C.karstii and a new species C.citricola and the C.acutatum complex included a new species,C.citri.The ability of strains to cause anthracnose on citrus fruits was tested by inoculation and strains of Colletotrichum gloeosporioides,C.fructicola and C.truncatum were pathogenic.展开更多
A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve t...A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve the the hardness and electrical conductivity properties of Cu-Cr-Zr-Mg lead frame alloy. This paper studies the effect of different extent of cold working on the aging properties by a supervised ANN to model the non-linear relationship between processing parameters and the properties. The back-propagation (BP) training algorithm is improved by Levenberg-Marquardt algorithm. A basic repository on the domain knowledge of cold worked aging processes is established via sufficient data mining by the network. The predicted values of the ANN coincide well with the tested data. So an important foundation has been laid for prediction and optimum controlling the rolling and aging properties of Cu-Cr-Zr-Mg alloy.展开更多
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ...The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.展开更多
KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data ...KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement.展开更多
The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energy...The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.展开更多
Following the footsteps of biodegradable Mg-based and Fe-based alloys,biodegradable Zn-based alloy is a newcomer and rising star in the family of biodegradable metals and alloys.The combined superior mechanical proper...Following the footsteps of biodegradable Mg-based and Fe-based alloys,biodegradable Zn-based alloy is a newcomer and rising star in the family of biodegradable metals and alloys.The combined superior mechanical properties,appropriate degradation rates,excellent biocompatibility of biodegradable Zn-based alloys have brought worldwide research interest on the design,development and clinical translation of Zn-based alloys.The present perspective has summarized opportunities and challenges in the development of biodegradable Zn-based alloys.展开更多
Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t...Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.展开更多
In this study,a combination of acoustic emission(AE)method(AEM)and wave transmission method(WTM)is used to investigate the behaviors of AE and ultrasonic properties corresponding to initial fracturing in granitic rock...In this study,a combination of acoustic emission(AE)method(AEM)and wave transmission method(WTM)is used to investigate the behaviors of AE and ultrasonic properties corresponding to initial fracturing in granitic rocks.The relationships of AE characteristics,frequency spectra,and spatial locations with crack initiation(CI)are studied.The anisotropic ultrasonic characteristics,velocity distributions in different ray paths,wave amplitudes,and spectral characters of transmitted waves are investigated.To identify CI stress,damage initiations characterized by strain-based method(SBM),AEM and WTM are compared.For granite samples,it shows that the ratio of CI stress to peak strength estimated by SBM ranges from 0.4 to 0.55,and 0.49-0.6 by WTM,which are higher than that of AEM(0.38-0.46).The CI stress identified by AEM indicates the onset of microcracking,and the combination of AEM and WTM provides an insight into the detection of rock damage initiation and anisotropy.展开更多
Ti Ni alloys, with their unique shape memory effects and super elastic properties, occupy an indispensable place in the family of metallic biomaterials. In the past years, surface treatment is the main technique to im...Ti Ni alloys, with their unique shape memory effects and super elastic properties, occupy an indispensable place in the family of metallic biomaterials. In the past years, surface treatment is the main technique to improve the bioinert nature of microcrystalline Ti Ni alloys and inhibit on the release of toxic nickel ions to obtain excellent osteogenesis and osseointegration function. In the present study, nanocrystalline Ti49.2Ni50.8 alloy has been fabricated via equal channel angular pressing(ECAP), and the in vitro and in vivo studies revealed that it had enhanced cell viability, adhesion, proliferation, ALP(Alkaline phosphatase)activity and mineralization, and increased periphery thickness of new bone, in comparison to the commercial coarse-grained counterpart. These findings indicate that the reduction of grain size is beneficial to increasing the biocompatibility of Ti49.2Ni50.8 shape memory alloy.展开更多
基金This work was financially supported by the Key Basic and Applied Research Program of Guangdong Province(No.2019B030302010)the National Natural Science Foundation of China(No.U19A2085)+1 种基金the Key-Area Research and Develop-ment Program of Guangdong Province(No.2020B090923001)Special thanks to Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd.(SIMR)for its support in TEM testing.
文摘NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as outstanding superelastic properties.Here,UFGed bulk Ti_(35)Zr_(15)Ni_(35)Cu_(15)NiTi-based SMA is successfully prepared via spark plasma sintering of amorphous ribbon precursor at different sintering temperatures,and microstructural evolution and superelastic properties are symmetrically investigated.It is found that its grain size ranges from UFG to micro-grain with increased sintering temperature regard-less of the predominant B2 matrix in all bulk samples.Interestingly,the orientation relationships between B2 matrix and nano-scale fcc(Ti,Zr)_(2)Ni precipitate evolve from coherent to incoherent.Consequently,the UFGed samples exhibit perfect superelasticity with the high recoverable strain of∼5.8%,the stable recov-ery rate above 99%,and the great critical stress inducing martensitic transformation higher than 1 GPa,far superior to the corresponding ones of suction-cast micro-grained TiZrNiCu SMAs.Fundamentally,the perfect superelasticity is attributed to the good resistance to dislocation slip or grain boundary slip by residual nano-scale amorphous phase or secondary phase of coherent and semi-coherent fcc(Ti,Zr)_(2)Ni precipitate.In addition,the gentle superelastic plateau is associated to the favorable transfer stress and the strong ability to accommodate dislocation movement,which is generated by the coherent interface between nano-scale fcc(Ti,Zr)_(2)Ni and UFGed B2 matrix.These results suggest that spark plasma sintering of amorphous alloy precursor is a feasible route to obtaining excellent superelasticity in NiTi-based SMAs.
基金financially supported by the Programs for New Century Excellent Talents in University(NCETNo.06-0303)the National Natural Science Foundation of China(NSFC,No.50772041)
文摘Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional argon(Ar).The N-NDFs were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.The grain sizes are of 8~10 nm in dimension.The N-NDF shows n-type behavior and the corresponding N-NDF/p-Si heterojunction diodes are realized with a high rectification ratio of 102 at^7.8 V,and the current density reaches to1.35 A/cm2 at forward voltage of 8.5 V.The findings suggest that fabricated by CH_4/H_2/N_2 without Ar,the N-NDFs and the related rectifying diodes are favorable for achieving high performance diamond-based optoelectronic devices.
基金financially supported by The Program for New Century Excellent Talents in University (NCET)the National Natural Science Foundation of China (NSFC) under Grant No.50772041
文摘In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.
基金This work wus supporeal by the National Naturul Science Foundation of China(No.10025420 and No.90206009).
文摘A new parallel Monte Carlo simulation method of secondary electron (SE) and back scattered electron images (BSE) of scanning electron microscopy (SEM) for a com plex geometric structure has been developed. This paper describes briefly the si mulation method and the modification to the conventional sampling method for the step length. Example simulation results have been obtained for several artifici al structures.
基金financially supported by the EPSRC(No.EP/N007638/1)the 2021 Jiangsu Shuangchuang(Mass Innovation and Entrepreneurship)Talent Program(No.JSSCBS20210702)。
文摘The spatial arrangement,distribution and morphology of Fe-bearing intermetallics in AA6082 alloys depends on the manufacturing process of the alloy and thus influences the macroscopic properties.Here,the microstructure of a near industrial scale casting AA6082 Al alloy fabricated by:(a)direct chill casting,(b)Al-5 Ti-1 B grain refiner addition and(c)intensive melt shearing has been investigated by threedimensional visualization using SEM-based serial ultra microtomy tomography.The formation sequence of phases in AA6082 alloys is generally categorized into four stages:formation ofα-Al grains,Fe-bearing intermetallics,Mg_(2)Si phase,and eutectic rosettes.Results of three-dimensional visualization of the microstructure indicated that TiBparticles not only could nucleate Fe-bearingβ-intermetallics,but also could provide substrate for the formation of Fe-bearingα-intermetallics and Mg_(2)Si.A further deep analysis reveals that the essential condition for the formation of secondary phases such as Fe-bearing intermetallics and Mg_(2)Si phase is the build-up of a supersaturated solute front at theα-Al solid-liquid interface irrespective of the specific nucleation site.In addition,the results indicate that grain refinement processing causes the severe interconnectivity of Fe-bearingα-intermetallics.However,the intensive melt shearing is a better manufacturing process because the intermetallics are more evenly distributed and refined than with the addition of the grain refiner,thereby improving the properties of the alloy.
基金This work was supported by the National Natural Science Foundation of China(No.10025420,No.20075026,No.60306006 and No.90206009)the post-doctoral fellowship provided by a Grant-in-Aid for Creative Scientific Research of Japanese govermment(No.13GS0022).The authors would also like to thank Dr.H.Yoshikawa,National Institute for Materials Science of Japan,and Dr.T.Nagatomi,Osaka University,for their helpful comments.
文摘The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is very close in value to th e theoretical surface energy loss function in the lower energy loss region but g radually approaches the theoretical bulk energy loss function in the higher ener gy loss region. Moreover, the intensity corresponding to surface excitation in e ffective energy loss functions decreases with the increase of primary electron e nergy. These facts show that the present effective energy loss function describe s not only surface excitation but also bulk excitation. At last, REELS spectra s imulated by Monte Carlo method based on use of the effective energy loss functio ns has reproduced the experimental REELS spectra with considerable success.
基金supported by the National Natural Science Foundation of China(No.51608071)Technology Plan Project(2019-0045).
文摘Estimating surface settlement induced by excavation construction is an indispensable task in tunneling,particularly for earth pressure balance(EPB)shield machines.In this study,predictive models for assessing surface settlement caused by EPB tunneling were established based on extreme gradient boosting(XGBoost),artificial neural network,support vector machine,and multivariate adaptive regression spline.Datasets from three tunnel construction projects in Singapore were used,with main input parameters of cover depth,advance rate,earth pressure,mean standard penetration test(SPT)value above crown level,mean tunnel SPT value,mean moisture content,mean soil elastic modulus,and grout pressure.The performances of these soft computing models were evaluated by comparing predicted deformation with measured values.Results demonstrate the acceptable accuracy of the model in predicting ground settlement,while XGBoost demonstrates a slightly higher accuracy.In addition,the ensemble method of XGBoost is more computationally efficient and can be used as a reliable alternative in solving multivariate nonlinear geo-engineering problems.
基金The National Natural Science Foundation of China(Nos.51671017,51971020)the Major State Research and Development Program of China(No.2016YFB0300801)+4 种基金Beijing Municipal Natural Science Foundation(No.2202033)Beijing Laboratory of Metallic Materials and Processing for Modern Transportationthe fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201835)the Fundamental Research Funds for the Central Universities(No.FRF-IC-19–010,FRF-IC-19–015)the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials(2018-Z04)。
文摘Magnesium alloys,a novel functional material for the fabrication of fracturing tools,are being paid more and more attentions recently due to their relatively high mechanical properties and fast dissolubility ability after fracturing.In this study,the novel extruded Mg-10Gd-3Y-0.3Zr-xNi alloys will be reported and their microstructure,mechanical and corrosion behaviors will be also studied.The results show that Ni contents influence phase precipitation behaviors.With adding 0.2 wt%Ni,a large amount of Zr_(7)Ni_(10)phases will be precipitated insidesα-Mg matrix,directly leading to degradation of strength and large corrosion rate.With further increasing Ni contents,the precipitation phases can be changed from Mg_(5)RE to 18R-LPSO structure,resulting in higher mechanical properties and faster corrosion rate.Moreover,adding Ni element also change the texture orientation by influencing the precipitation behavior of the alloys.The alloys invented in this paper have attained the highest compressive and tensile properties among all the reported dissoluble magnesium alloys.This work is beneficial in understanding the role of Ni in the magnesium alloys and provides more materials alternatives for the fabrication of dissoluble fracturing tools.
基金Supported in China by National Key R&D program of China under the grants(2018YF A0404201.2018YFA0404202.2018YF A0404203)by NSFC(12022502,190527,135011,11761141001.U1931112,11775131,U1931201,11905043,U1931108)by NSFSPC(ZR2019MA014),and in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.
基金supported by the China Agriculture Research System (CARS-27)L. Cai acknowledges grantsKSCX2-YW-Z-1026 ⁄ NSFC31070020K.D. Hyde thanks theNational Research Council of Thailand, Colletotrichum grant number54201020003 for financial support.
文摘There have been considerable advances in the understanding of species concepts in the genus Colletotrichum.This has lead to the need to carry out fresh surveys of Colletotrichum species associated with important hosts.Colletotrichum species are associated with Citrus plants as saprobes,important pre-harvest and post-harvest pathogens,as well as endophytes.In this study,a total of 312 Colletotrichum strains were isolated from leaves,shoots and fruits of cultivated Citrus and Fortunella species with or without disease symptoms across the main citrus production areas in China.The morphology of all strains were studied and multilocus(ACT,TUB2,CAL,GAPDH,GS,ITS)phylogeny established.Strains were from four important species complexes of Colletotrichum,namely C.gloeosporioides species complex,C.boninense species complex,C.acutatum species complex and a final group including C.truncatum,which was rare on Citrus species.The species belonging to the C.gloeosporioides species complex comprised C.gloeos porioides and C.fructicola,the C.boninense complex comprised C.karstii and a new species C.citricola and the C.acutatum complex included a new species,C.citri.The ability of strains to cause anthracnose on citrus fruits was tested by inoculation and strains of Colletotrichum gloeosporioides,C.fructicola and C.truncatum were pathogenic.
基金supported by National High Technical Research and Development Programme of China(No.2002AA331112)supported by the Doctorate Foundation of Northwestern Polytechnical University.
文摘A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve the the hardness and electrical conductivity properties of Cu-Cr-Zr-Mg lead frame alloy. This paper studies the effect of different extent of cold working on the aging properties by a supervised ANN to model the non-linear relationship between processing parameters and the properties. The back-propagation (BP) training algorithm is improved by Levenberg-Marquardt algorithm. A basic repository on the domain knowledge of cold worked aging processes is established via sufficient data mining by the network. The predicted values of the ANN coincide well with the tested data. So an important foundation has been laid for prediction and optimum controlling the rolling and aging properties of Cu-Cr-Zr-Mg alloy.
基金Supported by the following grants:the National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203)the National Natural Science Foundation of China(12022502,11905227,U1931112,11635011,11761141001,Y811A35,11675187,U1831208,U1931111)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.
基金supported by the following grants:The National Key R&D program of China under grants 2018YFA0404201the National Natural Science Foundation of China(NSFC)No.12022502,No.12205314,No.12105301,No.12261160362,No.12105294,No.U1931201,No.12393851,No.12393854+1 种基金In Thailand,support was provided by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT)under the High-Potential Research Team Grant Program(N42A650868).
文摘KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV.Detector simulation is the important foundation for estimating detector performance and data analysis.It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units(>6000)with large altitude difference(30)and huge coverage(1.3).In this paper,the design of the KM2A simulation code G4KM2A based on Geant4 is introduced.The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow.Some simplifications are used to significantly speed up the execution of G4KM2A.The running time is reduced by at least 30 times compared to full detector simulation.The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented,which show good agreement.
基金Supported by the National Key R&D Program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203,2018YFA0404204)the National Natural Science Foundation of China(12022502,12205314,12105301,12261160362,12105294,U1931201)+2 种基金the Youth Innovation Promotion Association CAS(2022010)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)。
文摘The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.
基金the National Natural Science Foundation of China(Nos.31700819 and 51871020)the Young Elite Scientists Sponsorship Program by CAST(YESS,No2018QNRC001)the Fundamental Research Funds for the Central Universities(No.06500098)。
文摘Following the footsteps of biodegradable Mg-based and Fe-based alloys,biodegradable Zn-based alloy is a newcomer and rising star in the family of biodegradable metals and alloys.The combined superior mechanical properties,appropriate degradation rates,excellent biocompatibility of biodegradable Zn-based alloys have brought worldwide research interest on the design,development and clinical translation of Zn-based alloys.The present perspective has summarized opportunities and challenges in the development of biodegradable Zn-based alloys.
基金supported by the National Natural Science Foundation of China(12393851,12261160362,12393852,12393853,12393854,12022502,2205314,12105301,12105292,12105294,12005246,and 12173039)Department of Science and Technology of Sichuan Province(24NSFJQ0060 and 2024NSFSC0449)+5 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(YSBR-061,2022010)Thailand by the National Science and Technology Development Agency(NSTDA)National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)the Chengdu Management Committee of Tianfu New Area for constant financial support to research with LHAASO datathe Milky Way Imaging Scroll Painting(MWISP)project,sponsored by the National Key R&D Program of China(2023YFA1608000 and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH047)。
文摘Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
基金financially supported by the National Natural Science Foundation of China(Grant No.51809137)the Natural Science Foundation of Jiangsu Province(Grant No.BK20180480)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.2017015)。
文摘In this study,a combination of acoustic emission(AE)method(AEM)and wave transmission method(WTM)is used to investigate the behaviors of AE and ultrasonic properties corresponding to initial fracturing in granitic rocks.The relationships of AE characteristics,frequency spectra,and spatial locations with crack initiation(CI)are studied.The anisotropic ultrasonic characteristics,velocity distributions in different ray paths,wave amplitudes,and spectral characters of transmitted waves are investigated.To identify CI stress,damage initiations characterized by strain-based method(SBM),AEM and WTM are compared.For granite samples,it shows that the ratio of CI stress to peak strength estimated by SBM ranges from 0.4 to 0.55,and 0.49-0.6 by WTM,which are higher than that of AEM(0.38-0.46).The CI stress identified by AEM indicates the onset of microcracking,and the combination of AEM and WTM provides an insight into the detection of rock damage initiation and anisotropy.
基金supported by the National Key R&D Program of China (No. 2018YFC1106600)National Natural Science Foundation of China (NSFC)+4 种基金the Russian Foundation for Basic Research (RFBR) NSFC-RFBR Cooperative Project (No. 51611130054)the National Natural Science Foundation of China (Nos. 51431002 and 51871004)the National Natural Science Foundation of China (NSFC)the Research Grants Council (RGC) of Hong Kong NSFC-RGC Joint Research Scheme (Grant No. 5161101031)the financial support from Saint Petersburg State University in the framework of Call 3 project (id 26130576)
文摘Ti Ni alloys, with their unique shape memory effects and super elastic properties, occupy an indispensable place in the family of metallic biomaterials. In the past years, surface treatment is the main technique to improve the bioinert nature of microcrystalline Ti Ni alloys and inhibit on the release of toxic nickel ions to obtain excellent osteogenesis and osseointegration function. In the present study, nanocrystalline Ti49.2Ni50.8 alloy has been fabricated via equal channel angular pressing(ECAP), and the in vitro and in vivo studies revealed that it had enhanced cell viability, adhesion, proliferation, ALP(Alkaline phosphatase)activity and mineralization, and increased periphery thickness of new bone, in comparison to the commercial coarse-grained counterpart. These findings indicate that the reduction of grain size is beneficial to increasing the biocompatibility of Ti49.2Ni50.8 shape memory alloy.