A series of the samples La_(1-x)(Sr_(1-y)Na_y)_xMnO_3(y=0.0,0.2,0.4,0.6,0.8,1.0) were prepared by the solid-state reaction method.Magnetoresistance enhancement and temperature stability of magnetoresistance in the sys...A series of the samples La_(1-x)(Sr_(1-y)Na_y)_xMnO_3(y=0.0,0.2,0.4,0.6,0.8,1.0) were prepared by the solid-state reaction method.Magnetoresistance enhancement and temperature stability of magnetoresistance in the system La_(1-x)(Sr_(1-y)Na_y)_xMnO_3 with unchanged Mn^(3+)/Mn^(4+) ratio through the doping of both monovalent and divalent elements at A site were studied through the measurements of X-ray diffraction(XRD) patterns,resistivity-temperature(ρ-T) curves and magnetoresistance-temperature(MR-T) curves.The results indicate that with the increase of Na doping amount,the peak value of MR increases,and it increases from 12.4% for y=0.2 to 50.6% for y=1.0 in the magnetic field B=0.8 T;ρ-T curves exhibit the double-peak phenomenon,which comes from the competition between the resistivity of surface phase and that of body phase;for the sample of y=0.8,MR increases slowly from 8.3% to 9.4% in the temperature range from 259 to 179 K,and MR is so stable in such a wide temperature range,which provides reference for the research on the temperature stability of MR.展开更多
提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions...提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions)离散元程序进行改进,从而对在不同颗粒间粘结强度下的离散元试样进行一维固结的数值模拟试验来确定其结构屈服应力,并以结构屈服应力为桥梁建立颗粒间粘结强度随含水率变化的函数关系,最后建立能够反映真实非饱和土试样颗粒级配和在不同含水量下的离散元数值模型,为通过PFC3D等三维离散元软件研究非饱和土的基本力学特性提供思路.展开更多
A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6D...A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) was studied through the measurements of X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) image, resistivity-temperature (ρ-T) curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that for the samples with low sintering temperature of the matrix, lowfield magnetoresistance effect appears on the whole temperature range and can be explained by grain boundary effect; for the sample with high sintering temperature of the matrix, intrinsic magnetoresistance peak appears on the high-temperature range, low-field magnetore-sistance effect appears on low temperature range, and the magnetoresistance in the magnetic field of 0.2 T and on the comparatively large temperature range between 280 K and 225 K hardly changes with temperature and remains at 4.8%, which can be explained by the competition between the intrinsic magnetoresistance induced by double-exchange function inside grains and the tunneling magnetoresis-tance (TMR) induced by grain boundary effect. The temperature stability of magnetoresistance is beneficial to the practical applications of MR.展开更多
基金supported by the National Natural Foundation of China (No. 19934003)the Natural Science Research Key Program of Anhui Educational Committee (No. KJ2011A259)+2 种基金the Cultivating Base of Anhui Key Laboratory of Spintronics and Nano-materials Research Program(No. 2010YKF01No. 2010YKF04)the Professors’ and Doctors’ Research Startup Foundation of Suzhou University (Nos. 2011jb01 and 2011jb02)
文摘A series of the samples La_(1-x)(Sr_(1-y)Na_y)_xMnO_3(y=0.0,0.2,0.4,0.6,0.8,1.0) were prepared by the solid-state reaction method.Magnetoresistance enhancement and temperature stability of magnetoresistance in the system La_(1-x)(Sr_(1-y)Na_y)_xMnO_3 with unchanged Mn^(3+)/Mn^(4+) ratio through the doping of both monovalent and divalent elements at A site were studied through the measurements of X-ray diffraction(XRD) patterns,resistivity-temperature(ρ-T) curves and magnetoresistance-temperature(MR-T) curves.The results indicate that with the increase of Na doping amount,the peak value of MR increases,and it increases from 12.4% for y=0.2 to 50.6% for y=1.0 in the magnetic field B=0.8 T;ρ-T curves exhibit the double-peak phenomenon,which comes from the competition between the resistivity of surface phase and that of body phase;for the sample of y=0.8,MR increases slowly from 8.3% to 9.4% in the temperature range from 259 to 179 K,and MR is so stable in such a wide temperature range,which provides reference for the research on the temperature stability of MR.
文摘提出了一种建立非饱和土体宏-细观参数之间关系的方法,来建立在不同孔隙比和含水率等初始条件下非饱和土在不同应力路径下的离散元计算模型;通过编制离散元程序,基于接触粘结模型,对现有的PFC3D(Particle Flow Code in three dimensions)离散元程序进行改进,从而对在不同颗粒间粘结强度下的离散元试样进行一维固结的数值模拟试验来确定其结构屈服应力,并以结构屈服应力为桥梁建立颗粒间粘结强度随含水率变化的函数关系,最后建立能够反映真实非饱和土试样颗粒级配和在不同含水量下的离散元数值模型,为通过PFC3D等三维离散元软件研究非饱和土的基本力学特性提供思路.
基金supported by the National Natural Foundation of China (No. 19934003) the Natural Science Research Key Program of Anhui Educational Committee (No. KJ2011A259)+3 种基金the Opening Program of Cultivating Base of Anhui Key Laboratory of Spintronics and Nanomaterials (Nos. 2010YKF04 2011YKF05)the Professors’and Doctors’Research Startup Foundation of Suzhou University (Nos. 2011jb01 2011jb02)
文摘A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) was studied through the measurements of X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) image, resistivity-temperature (ρ-T) curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that for the samples with low sintering temperature of the matrix, lowfield magnetoresistance effect appears on the whole temperature range and can be explained by grain boundary effect; for the sample with high sintering temperature of the matrix, intrinsic magnetoresistance peak appears on the high-temperature range, low-field magnetore-sistance effect appears on low temperature range, and the magnetoresistance in the magnetic field of 0.2 T and on the comparatively large temperature range between 280 K and 225 K hardly changes with temperature and remains at 4.8%, which can be explained by the competition between the intrinsic magnetoresistance induced by double-exchange function inside grains and the tunneling magnetoresis-tance (TMR) induced by grain boundary effect. The temperature stability of magnetoresistance is beneficial to the practical applications of MR.