Recent efforts and advances in additive manufacturing(AM) on different types of new materials are presented and reviewed. Special attention is paid to the material design of cladding layers, the choice of feedstock ma...Recent efforts and advances in additive manufacturing(AM) on different types of new materials are presented and reviewed. Special attention is paid to the material design of cladding layers, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the AM process, and the resulted microstructures and properties, as well as the relationship between these factors. Thereafter,the trend of development in the future is forecasted, including: Effects of the particles size and size distribution of powders; Approaches for producing fine microstructures; Opportunities for creating new materials by AM; Wide applications in reconditioning of damaged components; Challenges for deep understanding and applications of the AMed new materials. The idea of "Develop Materials" or "Create Materials" by AM is highlighted, but a series of scientific, technological and engineering problems remain to be solved in future.展开更多
Biochar is the carbon-rich product obtained from the thermochemical conversion of biomass under oxygen-limited conditions.Biochar has attained extensive attention due to its agronomical and environmental benefits in a...Biochar is the carbon-rich product obtained from the thermochemical conversion of biomass under oxygen-limited conditions.Biochar has attained extensive attention due to its agronomical and environmental benefits in agro-ecosystems.This work adopts the scientometric analysis method to assess the development trends of biochar research based on the literature data retrieved from the Web of Science over the period of 1998-2018.By analysing the basic characteristics of 6934 publications,we found that the number of publications grew rapidly since 2010.Based on a keyword analysis,it is concluded that scholars have had a fundamental recognition of biochar and preliminarily found that biochar application had agronomic and environmental benefits during the period of 1998-2010.The clustering results of keywords in documents published during 2011-2015 showed that the main research hotspots were“biochar production”,“biochar and global climate change”,“soil quality and plant growth”,“organic pollutants removal”,and“heavy metals immobilization”.While in 2016-2018,beside these five main research hotspots,“biochar and composting”topic had also received greater attention,indicating that biochar utilization in organic solid waste composting is the current research hotspot.Moreover,updated reactors(e.g.,microwave reactor,fixed-bed reactor,screw-feeding reactor,bubbling fluidized bed reactor,etc.)or technologies(e.g.,solar pyrolysis,Thermo-Catalytic Reforming process,liquefaction technology,etc.)applied for efficient energy production and modified biochar for environmental remediation have been extensively studied recently.The findings may help the new researchers to seize the research frontier in the biochar field.展开更多
A parameterization of soil freezing-thawing physics for use in the land-surface model of the National Center for Atmospheric Research(NCAR) Community Climate Model(CCM3) is developed and evaluated.The new parameteriza...A parameterization of soil freezing-thawing physics for use in the land-surface model of the National Center for Atmospheric Research(NCAR) Community Climate Model(CCM3) is developed and evaluated.The new parameterization scheme has improved the representation of physical processes in the existing land surface model.Numerical simulations using CCM3 with improved land-surface processes and with the original land-surface processes are compared against the NCEP reanalysis.It is found that the CCM3 version using the improved land surface model shows significant improvements in simulating precipitation in China during the summer season,the general circulation over East Asia,and wind fields over the Tibet Plateau.For the summer season,the improved model was able to better simulate the Indian summer monsoon components,including the mean northerly wind in the upper troposphere and mean southerly wind in the lower troposphere.展开更多
Intergovernmental Panel on Climate Change(IPCC)in 2001 reported that the Earth air temperature would rise by 1.4-5.8℃and 2.5℃on average by the year 2100.China re-gional climate model results also showed that the air...Intergovernmental Panel on Climate Change(IPCC)in 2001 reported that the Earth air temperature would rise by 1.4-5.8℃and 2.5℃on average by the year 2100.China re-gional climate model results also showed that the air temperature on the Qinghai-Tibet Plateau(QTP)would increase by 2.2-2.6℃in the next 50 years.A numerical permafrost model was developed to predict the changes of permafrost distribution on the QTP over the next 50 and 100 years under the two climatic warming scenarios,i.e.0.02℃/a,the lower value of IPCC’s estima-tion,and 0.052℃/a,the higher value predicted by Qin et al.Simulation results show that(i)in the case of 0.02℃/a air-temperature rise,permafrost area on the QTP will shrink about 8.8%in the next 50 years,and high temperature permafrost with mean annual ground temperature(MAGT)higher than?0.11℃may turn into seasonal frozen soils.In the next 100 years,perma-frost with MAGT higher than?0.5℃will disappear and the permafrost area will shrink up to 13.4%.(ii)In the case of 0.052℃/a air-temperature rise,permafrost area on the QTP will reduce about 13.5%after 50 years.More remarkable degradation will take place after 100 years,and permafrost area will reduce about 46%.Permafrost with MAGT higher than?2℃will turn into seasonal frozen soils and even unfrozen soils.展开更多
We investigated the moisture origin and contribution of different water sources to surface runoff entering the headwaters of the Heihe River basin on the basis of NECP/NCAR(National Centers for Environmental Predictio...We investigated the moisture origin and contribution of different water sources to surface runoff entering the headwaters of the Heihe River basin on the basis of NECP/NCAR(National Centers for Environmental Prediction/National Center for Atmospheric Research) re-analysis data and variations in the stable hydrogen and oxygen isotope ratios(δ D and δ 18O) of precipitation,spring,river,and melt water. The similar seasonality in precipitation δ 18O at different sites reveals the same moisture origin for water entering the headwaters of the Heihe River basin. The similarity in the seasonality of δ 18O and d-excess for precipitation at Yeniugou and Urumchi,which showed more positive δ 18O and lower d-excess values in summer and more negative δ 18O and higher d-excess values in winter,indicates a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter. Higher d-excess values throughout the year for Yeniugou suggest that in arid inland areas of northwestern China,water is intensively recycled. Temporal changes in δ 18O,δ D,and d-excess reveal distinct contributions of different bodies of water to surface runoff. For example,there were similar trends for δ D,δ 18O,and d-excess of precipitation and river water from June to September,similar δ 18O trends for river and spring water from December to February,and similar trends for precipitation and runoff volumes. However,there were significant differences in δ 18O between melt water and river water in September. Our results show that the recharge of surface runoff by precipitation occurred mainly from June to mid-September,whereas the supply of surface runoff in winter was from base flow(as spring water) ,mostly with a lower runoff amount.展开更多
The interaction between permafrost and atmosphere is accomplished through transfer of heat and moisture in the overlay active layer. Thus, the research on the thermal and hydrodynamics of active layer during the thawi...The interaction between permafrost and atmosphere is accomplished through transfer of heat and moisture in the overlay active layer. Thus, the research on the thermal and hydrodynamics of active layer during the thawing and freezing processes was considered a key to revealing the heat and moisture exchanges between permafrost and atmosphere. The monitoring and research on active layer were conducted because permafrost occupies about two thirds of the total area of the Tibetan Plateau. Based on the analysis of the ground temperature data and soil moisture data of monitoring near the Wudaoliang region of the Tibetan Plateau, the thawing and freezing processes of active layer were divided into four stages, i.e. summer thawing stage (ST), autumn freezing stage (AF), winter cooling stage (WC) and spring warming stage (SW). Coupled heat and water flow is much more complicated in ST and AF, and more amount of water is migrating in these two stages. Heat is transferred mainly via conductive heat flow in the展开更多
Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid scree...Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid screening, we identified three abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors, ABF2 (AREB1), ABF3, and ABF4 (AREB2), as the putative binding proteins of the NYE1 promoter. Through the transactivation analysis, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrated that ABF2, ABF3, and ABF4 directly bound to and activated the NYE1 promoter in vitro and in vivo. ABA is a positive regulator of leaf senescence, and exogenously applied ABA can accelerate Chl degradation. The triple mutant of the ABFs, abf2abf3abf4, as well as two ABA-insensitive mutants, abil-1 and snrk2.2/2.3/2.6, exhibited stay-green phenotypes after ABA treatment, along with decreased induction of NYE1 and NYE2 expression. In contrast, overexpression of ABF4 accelerated Chl degradation upon ABA treatment. Interestingly, ABF2/3/4 could also activate the expression of two Chl catabolic enzyme genes, PAO and NYCl, by directly binding to their promoters. In addition, abf2abf3abf4 exhibited a functional stay-green phenotype, and senescence-associated genes (SAGs), such as SAG29 (SWEET15), might be directly regulated by the ABFs. Taken together, our results suggest that ABF2, ABF3, and ABF4 likely act as key regulators in mediating ABA-triggered Chl degradation and leaf senescence in general in Arabidopsis.展开更多
Grazing exclusion using fences is a key policy being applied by the Chinese government to rehabilitate degraded grasslands on the Tibetan Plateau(TP)and elsewhere.However,there is a limited understanding of the effect...Grazing exclusion using fences is a key policy being applied by the Chinese government to rehabilitate degraded grasslands on the Tibetan Plateau(TP)and elsewhere.However,there is a limited understanding of the effects of grazing exclusion on alpine ecosystem functions and services and its impacts on herders’livelihoods.Our meta-analyses and questionnaire-based surveys revealed that grazing exclusion with fences was effective in promoting aboveground vegetation growth for up to four years in degraded alpine meadows and for up to eight years in the alpine steppes of the TP.Longer-term fencing did not bring any ecological and economic benefits.We also found that fencing hindered wildlife movement,increased grazing pressure in unfenced areas,lowered the satisfaction of herders,and rendered substantial financial costs to both regional and national governments.We recommend that traditional free grazing should be encouraged if applicable,short-term fencing(for 4-8 years)should be adopted in severely degraded grasslands,and fencing should be avoided in key wildlife habitat areas,especially the protected large mammal species.展开更多
We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for pra...We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for practicing Earth system science. Watershed science is an Earth system science practiced on a watershed scale, and it has developed rapidly over the previous two decades. The goal of watershed science is to understand and predict the behavior of complex watershed systems and support the sustainable development of watersheds. However, watershed science confronts the difficulties of understanding complex systems, achieving scale transformation, and simulating the co-evolution of the human-nature system. These difficulties are fundamentally methodological challenges. Therefore, we discuss the research methods of watershed science, which include the self-organized complex system method, the upscaling method dominated by statistical mechanics, Darwinian approaches based on selection and evolutionary principles, hydro-economic and eco-economic methods that emphasize the human-nature system co-evolution, and meta-synthesis for addressing unstructured problems. These approaches together can create a bridge between holism and reductionism and work as a group of operational methods to combine hard and soft integrations and capture all aspects of both natural and human systems. These methods will contribute to the maturation of watershed science and to a methodology that can be used throughout land-surface systems science.展开更多
A field investigation of arboviruses was conducted in Dejiang, Guizhou Province in the summer of 2016. A total of 8,795 mosquitoes, belonging to four species of three genera, and 1,300 midges were collected. The mosqu...A field investigation of arboviruses was conducted in Dejiang, Guizhou Province in the summer of 2016. A total of 8,795 mosquitoes, belonging to four species of three genera, and 1,300 midges were collected. The mosquito samples were identified on site according to their morphology, and the pooled samples were ground and centrifuged in the laboratory. The supernatant was incubated with mosquito tissue culture cells(C6/36) and mammalian cells(BHK-21) for virus isolation. The results indicated that 40%(3,540/8,795) were Anopheles sinensis, 30%(2,700/8,795) were Culex pipiens quinquefasciatus, and 29%(2,530/8,795)were Armigeres subbalbeatus. Furthermore, a total of eight virus isolates were obtained, and genome sequencing revealed two Zika viruses(ZIKVs) isolated from Culex pipiens quinquefasciatus and Armigeres subbalbeatus, respectively; three Japanese encephalitis viruses(JEVs) isolated from Culex pipiens quinquefasciatus; two Banna viruses(BAVs) isolated from Culex pipiens quinquefasciatus and Anopheles sinensis, respectively; and one densovirus(DNV) isolated from Culex pipiens quinquefasciatus.The ZIKVs isolated from the Culex pipiens quinquefasciatus and Armigeres subbalbeatus mosquitoes represent the first ZIKV isolates in China's Mainland. This discovery presents new challenges for the prevention and control of ZIKV in China, and prompts international cooperation on this global issue.展开更多
The construction of the Qinghai-Xizang Railway is facing some challenges posed by the presence of warm and ice-rich permafrost and predicted climate warming. To resolve these issues and ensure the railway a success, a...The construction of the Qinghai-Xizang Railway is facing some challenges posed by the presence of warm and ice-rich permafrost and predicted climate warming. To resolve these issues and ensure the railway a success, adjustments will have to be made in design strategies and principles. This paper presents several examples of permafrost-distribution anomaly caused by site-specific conditions. It analyzes the mechanism through which these local factors influence the occurrence and preservation of permafrost by modifying the heat convection and conduction patterns, and the amount of solar radiation received by the ground surface. A good understanding of these anomalies in permafrost occurrence is significant as it may provide some hints on the techniques and measures we can use to artificially simulate similar effects. A number of measures can be taken to lower ground temperature and to counter the effect of cli-mate warming. These measures include use of proper roadbed material and configuration, in order to adjust solar radiation, heat convection and conduction patterns. It is recommended that a new proactive approach be adopted in the railway design. This approach emphasizes the use of all the above-mentioned measures to cool down the roadbed. This is different from previous methods of preventing permafrost from thawing by utilizing more thermal resistant materials.展开更多
Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion...Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion, isobaric interferences and instrumental drift remain obvious problems that must be overcome in order to obtain precise and accurate results, For this reason, we have done many experi- ments and developed a set of simple, cost-effective and practical methods widely applicable for precise and rapid determination of trace element abundances in geological materials using ICP-MS. Commonly used high-pressure digestion technique is indeed effective in decomposing refractory phases, but this inevitably produces fluoride complexes that create new problems. We demonstrate that the fluoride complexes formed during high-pressure digestion can be readily re-dissolved using high-pressure vessel at 190 ℃ for only 2 h for 50 mg sample. In the case of isobaric interferences, although oxide (e.g., MO^+/M^+) and hydroxide (e.g., MO^+/M^+) productivity is variable between runs, the (MO^+/M^+)/(CeO^+/Ce^+) and (MOH^+/M^+)/(CeO^+/Ce^+) ratios remain constant, making isobaric interference correction for all other elements of interest straightforward, for which we provide an easy-to-use off-line procedure. We also show that mass-time-intensity drift curve is smooth as recognized previously, for which the correction can be readily done by analyzing a quality-control (QC) solution and using off-line Excel VBA procedure without internal standards. With these methods, we can produce data in reasonable agreement with rec- ommended values of international rock reference standards with a relative error of 〈8% and precision generally better than 5%. Importantly, compared to the widely used analytical practice, we can effectively save 〉60% of time (e.g., 〈24 h vs. 〉60 h).展开更多
Terpenoids are the largest and most diverse class of plant-specialized metabolites, which function in diverse physiological processes during plant development. In the biosynthesis of plant terpenoids, short-chain pren...Terpenoids are the largest and most diverse class of plant-specialized metabolites, which function in diverse physiological processes during plant development. In the biosynthesis of plant terpenoids, short-chain prenyltransferases (SC-PTs), together with terpene synthases (TPSs), play critical roles in determining terpenoid diversity. SC-PTs biosynthesize prenyl pyrophosphates with different chain lengths, and these compounds are the direct precursors of terpenoids. Arabidopsis thaliana possesses a subgroup of SC-PTs whose functions are not clearly known. In this study, we focus on 10 geranylgeranyl pyro- phosphate synthase-like [GGPPSL] proteins, which are commonly thought to produce GGPP [C20]. We found that a subset of members of the Arabidopsis GGPPSL gene family have undergone neo- functionalization: GGPPSL6, 7, 9, and 10 mainly have geranylfarnesyl pyrophosphate synthase activity (C25; renamed AtGFPPS1, 2, 3, and 4), and GGPPSL8 produces even longer chain prenyl pyrophosphate (〉C30; renamed polyprenyl pyrophosphate synthase 2, AtPPPS2). By solving the crystal structures of AtGFPPS2, AtPPPS2, and AtGGPPS11, we reveal the product chain-length determination mechanism of SC-PTs and interpret it as a "three floors" model. Using this model, we identified a novel GFPPS clade distributed in Brassicaceae plants and found that the GFPPS gene typically occurs in tandem with a gene encoding a TPS, forming a GFPPS-TPS gene cluster.展开更多
Total flavonoids are the main pharmaceutical components of Trollius chinensis Bunge, and orientin and vitexin are the monomer components of total flavonoids in Trollius chinensis Bunge. In this study, an aged mouse mo...Total flavonoids are the main pharmaceutical components of Trollius chinensis Bunge, and orientin and vitexin are the monomer components of total flavonoids in Trollius chinensis Bunge. In this study, an aged mouse model was established through intraperitoneal injection of D-galactose for 8 weeks, followed by treatment with 40, 20, or 10 mg/kg orientin, vitexin, or a positive control (vitamin E) via intragastric administration for an additional 8 weeks. Orientin, vitexin, and vitamin E improved the general medical status of the aging mice and significantly increased their brain weights. They also produced an obvious rise in total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase levels in the serum, and the levels of superoxide dismutase, catalase and glutathione peroxidase, Na+-K+-ATP enzyme, and Ca2+-Mg2+-ATP enzyme in the liver, brain and kidneys. In addition, they significantly reduced malondialdehyde levels in the liver, brain and kidney and lipofuscin levels in the brain. They also significantly improved the neuronal ultrastructure. The 40 mg/kg dose of orientin and vitexin had the same antioxidant capacity as vitamin E. These experimental findings indicate that orientin and vitexin engender anti-aging effects through their antioxidant capacities.展开更多
The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively s...The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy(PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids(BAs) are ligands of farnesoid X receptor(FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potentialuse of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.展开更多
Data scarcity is a major obstacle for high-resolution mapping of permafrost on the Tibetan Plateau(TP).This study produces a new permafrost stability distribution map for the 2010 s(2005–2015)derived from the predict...Data scarcity is a major obstacle for high-resolution mapping of permafrost on the Tibetan Plateau(TP).This study produces a new permafrost stability distribution map for the 2010 s(2005–2015)derived from the predicted mean annual ground temperature(MAGT)at a depth of zero annual amplitude(10–25 m)by integrating remotely sensed freezing degree-days and thawing degree-days,snow cover days,leaf area index,soil bulk density,high-accuracy soil moisture data,and in situ MAGT measurements from 237 boreholes on the TP by using an ensemble learning method that employs a support vector regression model based on distance-blocked resampled training data with 200 repetitions.Validation of the new permafrost map indicates that it is probably the most accurate of all currently available maps.This map shows that the total area of permafrost on the TP,excluding glaciers and lakes,is approximately 115.02(105.47–129.59)×10^4 km^2.The areas corresponding to the very stable,stable,semi-stable,transitional,and unstable types are 0.86×10^4,9.62×10^4,38.45×10^4,42.29×10^4,and 23.80×10^4 km^2,respectively.This new map is of fundamental importance for engineering planning and design,ecosystem management,and evaluation of the permafrost change in the future on the TP as a baseline.展开更多
Leaf senescence,the last stage of leaf development,is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for pla...Leaf senescence,the last stage of leaf development,is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants’fitness.The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age,phytohormones,and environmental stresses.Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes(SAGs)via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants.Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation,including chromatin and transcription regulation,post-transcriptional,translational and post-translational regulation.Due to the significant impact of leaf senescence on photosynthesis,nutrient remobilization,stress responses,and productivity,much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence,aiming for higher yield,better quality,or improved horticultural performance in crop plants.This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives.We also put forward the key issues that need to be addressed,including the nature of leaf age,functional stay-green trait,coordination between different regulatory pathways,source-sink relationship and nutrient remobilization,as well as translational researches on leaf senescence.展开更多
Decidual lymphocytes may mediate fetal trophoblast recognition and regulate maternal immune reaction and play an essential role in the maintenance of normal pregnancy. The aim of this study was to compare the percenta...Decidual lymphocytes may mediate fetal trophoblast recognition and regulate maternal immune reaction and play an essential role in the maintenance of normal pregnancy. The aim of this study was to compare the percentage of T cells, natural killer (NK) cells and natural killer T (NKT) cells within decidual parietalis of normal pregnant controls (NP) and patients with intraheptic cholestasis of pregnancy (ICP), and to investigate the production of interleukin-4 (IL-4), interferon-γ (IFN-γ) in the culture supernatant of decidual parietalis mononuclear cells (DPMCs). Compared with controls, the decidua parietalis from ICP were characterized with significant increased percentages of CD3^+CD56^+ cells, CD3^+CD56^+ cells, CD56^+CD16+ cells, CD56^+CD16^+ cells, CD56^+NKG2D+ ceils, and the significant decreased percentages of CD3^+ cells, CD3^+CD4^+ cells. There were no differences found for the percentage of CD3^+CD8^+ cells, CD56^+NKG2A^+ cells between control and study group. In addition, the enhanced concentration of IFN-γ was presented in culture supernatant of DPMCs from ICP. It was suggested that the increased NK cells, NKT cells and the decreased T cells in the decidual parietalis and over-secretion of IFN-γ could be correlated with the pathophysiology of ICP patients. Cellular & Molecular Immunology. 2007;4(1):71-75.展开更多
The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the ...The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.展开更多
Under global warming scenarios, the passive method of simply increasing the thermal resistance by raising the embankment height and using insulating materials has been proven ineffective in warm and ice-rich permafros...Under global warming scenarios, the passive method of simply increasing the thermal resistance by raising the embankment height and using insulating materials has been proven ineffective in warm and ice-rich permafrost areas and therefore could not be used in the Qinghai-Tibet Railway engineering. Instead, a proactive "cooled-roadbed" approach was developed and used to lower the ground temperature in order to maintain a perennially frozen subgrade. The concept that local and site-specific factors play an important role in the occurrence and disappearance of permafrost has helped us to devise a number of measures to cool down the roadbed. For example, we adjust and control heat transfer by using different embankment configurations and fill materials. The Qinghai-Tibet Railway project demonstrates that a series of proactive roadbed-cooling methods can be used to lower the temperature of permafrost beneath the embankment and to stabilize the roadbed. These methods include solar radiation control using shading boards, heat convection control using ventilation ducts, thermosyphons, air-cooled embankments, and heat conduction control using "thermal semi-conductor" materials, as well as combinations of above mentioned three control measures. This road-bed-cooling approach provides not only a solution for engineering construction in sensitive permafrost areas but also a countermeasure against possible global warming.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51775525, 51605456 and 51701198)
文摘Recent efforts and advances in additive manufacturing(AM) on different types of new materials are presented and reviewed. Special attention is paid to the material design of cladding layers, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the AM process, and the resulted microstructures and properties, as well as the relationship between these factors. Thereafter,the trend of development in the future is forecasted, including: Effects of the particles size and size distribution of powders; Approaches for producing fine microstructures; Opportunities for creating new materials by AM; Wide applications in reconditioning of damaged components; Challenges for deep understanding and applications of the AMed new materials. The idea of "Develop Materials" or "Create Materials" by AM is highlighted, but a series of scientific, technological and engineering problems remain to be solved in future.
基金support by the National Natural Science Foundation of China(21537002,41422105,41671478)the Natural Science Foundation of Jiangsu Province,China(Project No.BK20130050).
文摘Biochar is the carbon-rich product obtained from the thermochemical conversion of biomass under oxygen-limited conditions.Biochar has attained extensive attention due to its agronomical and environmental benefits in agro-ecosystems.This work adopts the scientometric analysis method to assess the development trends of biochar research based on the literature data retrieved from the Web of Science over the period of 1998-2018.By analysing the basic characteristics of 6934 publications,we found that the number of publications grew rapidly since 2010.Based on a keyword analysis,it is concluded that scholars have had a fundamental recognition of biochar and preliminarily found that biochar application had agronomic and environmental benefits during the period of 1998-2010.The clustering results of keywords in documents published during 2011-2015 showed that the main research hotspots were“biochar production”,“biochar and global climate change”,“soil quality and plant growth”,“organic pollutants removal”,and“heavy metals immobilization”.While in 2016-2018,beside these five main research hotspots,“biochar and composting”topic had also received greater attention,indicating that biochar utilization in organic solid waste composting is the current research hotspot.Moreover,updated reactors(e.g.,microwave reactor,fixed-bed reactor,screw-feeding reactor,bubbling fluidized bed reactor,etc.)or technologies(e.g.,solar pyrolysis,Thermo-Catalytic Reforming process,liquefaction technology,etc.)applied for efficient energy production and modified biochar for environmental remediation have been extensively studied recently.The findings may help the new researchers to seize the research frontier in the biochar field.
基金supported by Chinese National Science Foundation (NSFC) (No.40875050, 40575037, 40175020)National Key Basic Science Studies Developing Program of "973" (2007CB411506)
文摘A parameterization of soil freezing-thawing physics for use in the land-surface model of the National Center for Atmospheric Research(NCAR) Community Climate Model(CCM3) is developed and evaluated.The new parameterization scheme has improved the representation of physical processes in the existing land surface model.Numerical simulations using CCM3 with improved land-surface processes and with the original land-surface processes are compared against the NCEP reanalysis.It is found that the CCM3 version using the improved land surface model shows significant improvements in simulating precipitation in China during the summer season,the general circulation over East Asia,and wind fields over the Tibet Plateau.For the summer season,the improved model was able to better simulate the Indian summer monsoon components,including the mean northerly wind in the upper troposphere and mean southerly wind in the lower troposphere.
基金the Knowledge Innovation Project of Chinese Academy of Sciences(CAS)(Grant No.KZCX1-SW-04)the Knowledge Innovation Project of CAREERI,CAS(Grant No.CACX200009)the Project of Ministry of Science and Technology of China(Grant No.G1998040812).
文摘Intergovernmental Panel on Climate Change(IPCC)in 2001 reported that the Earth air temperature would rise by 1.4-5.8℃and 2.5℃on average by the year 2100.China re-gional climate model results also showed that the air temperature on the Qinghai-Tibet Plateau(QTP)would increase by 2.2-2.6℃in the next 50 years.A numerical permafrost model was developed to predict the changes of permafrost distribution on the QTP over the next 50 and 100 years under the two climatic warming scenarios,i.e.0.02℃/a,the lower value of IPCC’s estima-tion,and 0.052℃/a,the higher value predicted by Qin et al.Simulation results show that(i)in the case of 0.02℃/a air-temperature rise,permafrost area on the QTP will shrink about 8.8%in the next 50 years,and high temperature permafrost with mean annual ground temperature(MAGT)higher than?0.11℃may turn into seasonal frozen soils.In the next 100 years,perma-frost with MAGT higher than?0.5℃will disappear and the permafrost area will shrink up to 13.4%.(ii)In the case of 0.052℃/a air-temperature rise,permafrost area on the QTP will reduce about 13.5%after 50 years.More remarkable degradation will take place after 100 years,and permafrost area will reduce about 46%.Permafrost with MAGT higher than?2℃will turn into seasonal frozen soils and even unfrozen soils.
基金supported by the National Natural Science Foundation of China (91025016)the West Light Foundation of Western Doctors of the Chinese Academy of Sciences,the West Action Program of the Chinese Academy of Sciences (KZCX2-XB2-04-03)the China Postdoctoral Science Foundation (200801244 and 20070420135)
文摘We investigated the moisture origin and contribution of different water sources to surface runoff entering the headwaters of the Heihe River basin on the basis of NECP/NCAR(National Centers for Environmental Prediction/National Center for Atmospheric Research) re-analysis data and variations in the stable hydrogen and oxygen isotope ratios(δ D and δ 18O) of precipitation,spring,river,and melt water. The similar seasonality in precipitation δ 18O at different sites reveals the same moisture origin for water entering the headwaters of the Heihe River basin. The similarity in the seasonality of δ 18O and d-excess for precipitation at Yeniugou and Urumchi,which showed more positive δ 18O and lower d-excess values in summer and more negative δ 18O and higher d-excess values in winter,indicates a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter. Higher d-excess values throughout the year for Yeniugou suggest that in arid inland areas of northwestern China,water is intensively recycled. Temporal changes in δ 18O,δ D,and d-excess reveal distinct contributions of different bodies of water to surface runoff. For example,there were similar trends for δ D,δ 18O,and d-excess of precipitation and river water from June to September,similar δ 18O trends for river and spring water from December to February,and similar trends for precipitation and runoff volumes. However,there were significant differences in δ 18O between melt water and river water in September. Our results show that the recharge of surface runoff by precipitation occurred mainly from June to mid-September,whereas the supply of surface runoff in winter was from base flow(as spring water) ,mostly with a lower runoff amount.
文摘The interaction between permafrost and atmosphere is accomplished through transfer of heat and moisture in the overlay active layer. Thus, the research on the thermal and hydrodynamics of active layer during the thawing and freezing processes was considered a key to revealing the heat and moisture exchanges between permafrost and atmosphere. The monitoring and research on active layer were conducted because permafrost occupies about two thirds of the total area of the Tibetan Plateau. Based on the analysis of the ground temperature data and soil moisture data of monitoring near the Wudaoliang region of the Tibetan Plateau, the thawing and freezing processes of active layer were divided into four stages, i.e. summer thawing stage (ST), autumn freezing stage (AF), winter cooling stage (WC) and spring warming stage (SW). Coupled heat and water flow is much more complicated in ST and AF, and more amount of water is migrating in these two stages. Heat is transferred mainly via conductive heat flow in the
文摘Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid screening, we identified three abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors, ABF2 (AREB1), ABF3, and ABF4 (AREB2), as the putative binding proteins of the NYE1 promoter. Through the transactivation analysis, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrated that ABF2, ABF3, and ABF4 directly bound to and activated the NYE1 promoter in vitro and in vivo. ABA is a positive regulator of leaf senescence, and exogenously applied ABA can accelerate Chl degradation. The triple mutant of the ABFs, abf2abf3abf4, as well as two ABA-insensitive mutants, abil-1 and snrk2.2/2.3/2.6, exhibited stay-green phenotypes after ABA treatment, along with decreased induction of NYE1 and NYE2 expression. In contrast, overexpression of ABF4 accelerated Chl degradation upon ABA treatment. Interestingly, ABF2/3/4 could also activate the expression of two Chl catabolic enzyme genes, PAO and NYCl, by directly binding to their promoters. In addition, abf2abf3abf4 exhibited a functional stay-green phenotype, and senescence-associated genes (SAGs), such as SAG29 (SWEET15), might be directly regulated by the ABFs. Taken together, our results suggest that ABF2, ABF3, and ABF4 likely act as key regulators in mediating ABA-triggered Chl degradation and leaf senescence in general in Arabidopsis.
基金the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0405)the Science and Technology Service Network Initiative(KFJ-STS-QYZD060)+3 种基金the State Key Research Development Program of China(2016YFC0501802,2016YFC0501803 and 2016YFC0502002)the National Natural Science Foundation of China(41871040 and 41501057)the Innovative Research Team of the Ministry of Education of China(IRT_17R59)the Fundamental Research Funds for the Central Universities。
文摘Grazing exclusion using fences is a key policy being applied by the Chinese government to rehabilitate degraded grasslands on the Tibetan Plateau(TP)and elsewhere.However,there is a limited understanding of the effects of grazing exclusion on alpine ecosystem functions and services and its impacts on herders’livelihoods.Our meta-analyses and questionnaire-based surveys revealed that grazing exclusion with fences was effective in promoting aboveground vegetation growth for up to four years in degraded alpine meadows and for up to eight years in the alpine steppes of the TP.Longer-term fencing did not bring any ecological and economic benefits.We also found that fencing hindered wildlife movement,increased grazing pressure in unfenced areas,lowered the satisfaction of herders,and rendered substantial financial costs to both regional and national governments.We recommend that traditional free grazing should be encouraged if applicable,short-term fencing(for 4-8 years)should be adopted in severely degraded grasslands,and fencing should be avoided in key wildlife habitat areas,especially the protected large mammal species.
基金supported by Prof.Chen Fahurepresented by this paper was funded by the Major Research Plan of the National Natural Science Foundation of China(Grant Nos.91225302,91425303)the Cross-disciplinary Collaborative Teams Program for Science,Technology,and Innovation of the Chinese Academy of Sciences
文摘We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for practicing Earth system science. Watershed science is an Earth system science practiced on a watershed scale, and it has developed rapidly over the previous two decades. The goal of watershed science is to understand and predict the behavior of complex watershed systems and support the sustainable development of watersheds. However, watershed science confronts the difficulties of understanding complex systems, achieving scale transformation, and simulating the co-evolution of the human-nature system. These difficulties are fundamentally methodological challenges. Therefore, we discuss the research methods of watershed science, which include the self-organized complex system method, the upscaling method dominated by statistical mechanics, Darwinian approaches based on selection and evolutionary principles, hydro-economic and eco-economic methods that emphasize the human-nature system co-evolution, and meta-synthesis for addressing unstructured problems. These approaches together can create a bridge between holism and reductionism and work as a group of operational methods to combine hard and soft integrations and capture all aspects of both natural and human systems. These methods will contribute to the maturation of watershed science and to a methodology that can be used throughout land-surface systems science.
基金supported by the National Natural Science Foundation of China(81290342,81501757)the Special National Project on Research and Development of Key Biosafety Technologies(2016YFC1201904)+3 种基金the National Key Plan for Scientific Research and Development of China(2016YFD0500300)the Development Grants of State Key Laboratory of Infectious Disease Prevention and Control(2014SKLID103,2015SKLID505)the National Key Research and Development Program of China(2017YFC1200202)the Open Research Fund Program of Wuhan National Bio-Safety Level 4 Lab of CAS(2017SPCAS003)
文摘A field investigation of arboviruses was conducted in Dejiang, Guizhou Province in the summer of 2016. A total of 8,795 mosquitoes, belonging to four species of three genera, and 1,300 midges were collected. The mosquito samples were identified on site according to their morphology, and the pooled samples were ground and centrifuged in the laboratory. The supernatant was incubated with mosquito tissue culture cells(C6/36) and mammalian cells(BHK-21) for virus isolation. The results indicated that 40%(3,540/8,795) were Anopheles sinensis, 30%(2,700/8,795) were Culex pipiens quinquefasciatus, and 29%(2,530/8,795)were Armigeres subbalbeatus. Furthermore, a total of eight virus isolates were obtained, and genome sequencing revealed two Zika viruses(ZIKVs) isolated from Culex pipiens quinquefasciatus and Armigeres subbalbeatus, respectively; three Japanese encephalitis viruses(JEVs) isolated from Culex pipiens quinquefasciatus; two Banna viruses(BAVs) isolated from Culex pipiens quinquefasciatus and Anopheles sinensis, respectively; and one densovirus(DNV) isolated from Culex pipiens quinquefasciatus.The ZIKVs isolated from the Culex pipiens quinquefasciatus and Armigeres subbalbeatus mosquitoes represent the first ZIKV isolates in China's Mainland. This discovery presents new challenges for the prevention and control of ZIKV in China, and prompts international cooperation on this global issue.
文摘The construction of the Qinghai-Xizang Railway is facing some challenges posed by the presence of warm and ice-rich permafrost and predicted climate warming. To resolve these issues and ensure the railway a success, adjustments will have to be made in design strategies and principles. This paper presents several examples of permafrost-distribution anomaly caused by site-specific conditions. It analyzes the mechanism through which these local factors influence the occurrence and preservation of permafrost by modifying the heat convection and conduction patterns, and the amount of solar radiation received by the ground surface. A good understanding of these anomalies in permafrost occurrence is significant as it may provide some hints on the techniques and measures we can use to artificially simulate similar effects. A number of measures can be taken to lower ground temperature and to counter the effect of cli-mate warming. These measures include use of proper roadbed material and configuration, in order to adjust solar radiation, heat convection and conduction patterns. It is recommended that a new proactive approach be adopted in the railway design. This approach emphasizes the use of all the above-mentioned measures to cool down the roadbed. This is different from previous methods of preventing permafrost from thawing by utilizing more thermal resistant materials.
基金supported by National Natural Science Foundation of China(41130314 and 41630968)Chinese Academy of Sciences Innovation Grant(Y42217101L)+1 种基金Qingdao National Laboratory for Marine Science and Technology(2015ASKJ03)Marine Geological Process and Environment(U1606401)
文摘Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion, isobaric interferences and instrumental drift remain obvious problems that must be overcome in order to obtain precise and accurate results, For this reason, we have done many experi- ments and developed a set of simple, cost-effective and practical methods widely applicable for precise and rapid determination of trace element abundances in geological materials using ICP-MS. Commonly used high-pressure digestion technique is indeed effective in decomposing refractory phases, but this inevitably produces fluoride complexes that create new problems. We demonstrate that the fluoride complexes formed during high-pressure digestion can be readily re-dissolved using high-pressure vessel at 190 ℃ for only 2 h for 50 mg sample. In the case of isobaric interferences, although oxide (e.g., MO^+/M^+) and hydroxide (e.g., MO^+/M^+) productivity is variable between runs, the (MO^+/M^+)/(CeO^+/Ce^+) and (MOH^+/M^+)/(CeO^+/Ce^+) ratios remain constant, making isobaric interference correction for all other elements of interest straightforward, for which we provide an easy-to-use off-line procedure. We also show that mass-time-intensity drift curve is smooth as recognized previously, for which the correction can be readily done by analyzing a quality-control (QC) solution and using off-line Excel VBA procedure without internal standards. With these methods, we can produce data in reasonable agreement with rec- ommended values of international rock reference standards with a relative error of 〈8% and precision generally better than 5%. Importantly, compared to the widely used analytical practice, we can effectively save 〉60% of time (e.g., 〈24 h vs. 〉60 h).
文摘Terpenoids are the largest and most diverse class of plant-specialized metabolites, which function in diverse physiological processes during plant development. In the biosynthesis of plant terpenoids, short-chain prenyltransferases (SC-PTs), together with terpene synthases (TPSs), play critical roles in determining terpenoid diversity. SC-PTs biosynthesize prenyl pyrophosphates with different chain lengths, and these compounds are the direct precursors of terpenoids. Arabidopsis thaliana possesses a subgroup of SC-PTs whose functions are not clearly known. In this study, we focus on 10 geranylgeranyl pyro- phosphate synthase-like [GGPPSL] proteins, which are commonly thought to produce GGPP [C20]. We found that a subset of members of the Arabidopsis GGPPSL gene family have undergone neo- functionalization: GGPPSL6, 7, 9, and 10 mainly have geranylfarnesyl pyrophosphate synthase activity (C25; renamed AtGFPPS1, 2, 3, and 4), and GGPPSL8 produces even longer chain prenyl pyrophosphate (〉C30; renamed polyprenyl pyrophosphate synthase 2, AtPPPS2). By solving the crystal structures of AtGFPPS2, AtPPPS2, and AtGGPPS11, we reveal the product chain-length determination mechanism of SC-PTs and interpret it as a "three floors" model. Using this model, we identified a novel GFPPS clade distributed in Brassicaceae plants and found that the GFPPS gene typically occurs in tandem with a gene encoding a TPS, forming a GFPPS-TPS gene cluster.
基金supported by the Foundation of Zhangjiakou Science and Technology Committee, No.0711046D-9 and No.11110015D
文摘Total flavonoids are the main pharmaceutical components of Trollius chinensis Bunge, and orientin and vitexin are the monomer components of total flavonoids in Trollius chinensis Bunge. In this study, an aged mouse model was established through intraperitoneal injection of D-galactose for 8 weeks, followed by treatment with 40, 20, or 10 mg/kg orientin, vitexin, or a positive control (vitamin E) via intragastric administration for an additional 8 weeks. Orientin, vitexin, and vitamin E improved the general medical status of the aging mice and significantly increased their brain weights. They also produced an obvious rise in total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase levels in the serum, and the levels of superoxide dismutase, catalase and glutathione peroxidase, Na+-K+-ATP enzyme, and Ca2+-Mg2+-ATP enzyme in the liver, brain and kidneys. In addition, they significantly reduced malondialdehyde levels in the liver, brain and kidney and lipofuscin levels in the brain. They also significantly improved the neuronal ultrastructure. The 40 mg/kg dose of orientin and vitexin had the same antioxidant capacity as vitamin E. These experimental findings indicate that orientin and vitexin engender anti-aging effects through their antioxidant capacities.
基金supported by the National Institutes of Health Fund (Nos.DK081343,DK090036 and GM104037 to Grace L.Guo)the National Natural Science Foundation of China (No.81302059)+2 种基金the Natural Science Foundation of Heilongjiang Province of China (No.LC2013C35)the Foundation of Educational Committee of Heilongjiang Province of China (No.12541300)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry and Science Foundation for The Excellent Youth Scholars of the Fourth Hospital of Harbin Medical University in China
文摘The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy(PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids(BAs) are ligands of farnesoid X receptor(FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potentialuse of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070204)the National Natural Science Foundation of China(Grant Nos.42071421,41630856)。
文摘Data scarcity is a major obstacle for high-resolution mapping of permafrost on the Tibetan Plateau(TP).This study produces a new permafrost stability distribution map for the 2010 s(2005–2015)derived from the predicted mean annual ground temperature(MAGT)at a depth of zero annual amplitude(10–25 m)by integrating remotely sensed freezing degree-days and thawing degree-days,snow cover days,leaf area index,soil bulk density,high-accuracy soil moisture data,and in situ MAGT measurements from 237 boreholes on the TP by using an ensemble learning method that employs a support vector regression model based on distance-blocked resampled training data with 200 repetitions.Validation of the new permafrost map indicates that it is probably the most accurate of all currently available maps.This map shows that the total area of permafrost on the TP,excluding glaciers and lakes,is approximately 115.02(105.47–129.59)×10^4 km^2.The areas corresponding to the very stable,stable,semi-stable,transitional,and unstable types are 0.86×10^4,9.62×10^4,38.45×10^4,42.29×10^4,and 23.80×10^4 km^2,respectively.This new map is of fundamental importance for engineering planning and design,ecosystem management,and evaluation of the permafrost change in the future on the TP as a baseline.
基金This work was supported by the National Natural Science Foundation of China(31970196 to Z.L.,31570286 to H.G.,31670277 to K.Z.,31770318 to Y.M.)the National Key Research and Development Program of China(No.2019YFA0903904)+2 种基金Shenzhen Science and Technology Program(KQTD20190929173906742)to H.G.Science and Technology Commission of Shanghai Municipality(15JC1400800 to G.R.)the Agricultural Science and Technology Innovation Program of China,Chinese Academy of Agricultural Sciences(ASTIP-TRI02 to Y.G.).
文摘Leaf senescence,the last stage of leaf development,is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants’fitness.The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age,phytohormones,and environmental stresses.Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes(SAGs)via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants.Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation,including chromatin and transcription regulation,post-transcriptional,translational and post-translational regulation.Due to the significant impact of leaf senescence on photosynthesis,nutrient remobilization,stress responses,and productivity,much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence,aiming for higher yield,better quality,or improved horticultural performance in crop plants.This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives.We also put forward the key issues that need to be addressed,including the nature of leaf age,functional stay-green trait,coordination between different regulatory pathways,source-sink relationship and nutrient remobilization,as well as translational researches on leaf senescence.
文摘Decidual lymphocytes may mediate fetal trophoblast recognition and regulate maternal immune reaction and play an essential role in the maintenance of normal pregnancy. The aim of this study was to compare the percentage of T cells, natural killer (NK) cells and natural killer T (NKT) cells within decidual parietalis of normal pregnant controls (NP) and patients with intraheptic cholestasis of pregnancy (ICP), and to investigate the production of interleukin-4 (IL-4), interferon-γ (IFN-γ) in the culture supernatant of decidual parietalis mononuclear cells (DPMCs). Compared with controls, the decidua parietalis from ICP were characterized with significant increased percentages of CD3^+CD56^+ cells, CD3^+CD56^+ cells, CD56^+CD16+ cells, CD56^+CD16^+ cells, CD56^+NKG2D+ ceils, and the significant decreased percentages of CD3^+ cells, CD3^+CD4^+ cells. There were no differences found for the percentage of CD3^+CD8^+ cells, CD56^+NKG2A^+ cells between control and study group. In addition, the enhanced concentration of IFN-γ was presented in culture supernatant of DPMCs from ICP. It was suggested that the increased NK cells, NKT cells and the decreased T cells in the decidual parietalis and over-secretion of IFN-γ could be correlated with the pathophysiology of ICP patients. Cellular & Molecular Immunology. 2007;4(1):71-75.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575103,11672127,U1664258)Fundamental Research Funds for the Central Universities of China(Grant No.NT2018002)+1 种基金China Postdoctoral Science Foundation(Grant Nos.2017T100365,2016M601799)the Fundation of Graduate Innovation Center in NUAA(Grant No.k j20180207)
文摘The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX1-SW-04)the Outstanding Youth Foundation Projectthe National Natural Science Foundation of China (Grant No.40625004)
文摘Under global warming scenarios, the passive method of simply increasing the thermal resistance by raising the embankment height and using insulating materials has been proven ineffective in warm and ice-rich permafrost areas and therefore could not be used in the Qinghai-Tibet Railway engineering. Instead, a proactive "cooled-roadbed" approach was developed and used to lower the ground temperature in order to maintain a perennially frozen subgrade. The concept that local and site-specific factors play an important role in the occurrence and disappearance of permafrost has helped us to devise a number of measures to cool down the roadbed. For example, we adjust and control heat transfer by using different embankment configurations and fill materials. The Qinghai-Tibet Railway project demonstrates that a series of proactive roadbed-cooling methods can be used to lower the temperature of permafrost beneath the embankment and to stabilize the roadbed. These methods include solar radiation control using shading boards, heat convection control using ventilation ducts, thermosyphons, air-cooled embankments, and heat conduction control using "thermal semi-conductor" materials, as well as combinations of above mentioned three control measures. This road-bed-cooling approach provides not only a solution for engineering construction in sensitive permafrost areas but also a countermeasure against possible global warming.