Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine ...Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.展开更多
The study characterized the curing behaviors of phenol formaldehyde(PF)resin under different vacuum degrees and explored the properties of 9-ply plywood panels hot-pressed under both vacuum and atmospheric conditions....The study characterized the curing behaviors of phenol formaldehyde(PF)resin under different vacuum degrees and explored the properties of 9-ply plywood panels hot-pressed under both vacuum and atmospheric conditions.The changes in core temperature and moisture content of the plywood mats during hot pressing were investigated as well.It was found that the gel times and gel temperatures of PF resin decreased with the increase of vacuum degree using a self-made device.FTIR spectra indicated the degree of polycondensation of hydroxymethyl gradu-ally increased with the increase in temperature.It was also observed that a higher degree of vacuum led to a slower polycondensation reaction rate of PF resin.During different hot-pressing processes,the bonding strengths in the innermost and uppermost gluelines of the vacuum hot-pressed plywood panels were up to 30%–50%higher than their counterparts of conventional hot-pressed products.A less difference in the bonding strengths between these two gluelines was also observed for vacuum hot-pressed products.In addition,the core of vacuum hot-pressed plywood was found to have a greater heating rate and higher temperature at thefinal stage of hot pressing,which was beneficial to cure the PF resin.The results from this study indicate a promising potential of introducing a vacuum during hot pressing to improve the quality and productivity of plywood products and provide a basis for adopting vacuum to hot press wood composites.展开更多
In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditio...In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized.展开更多
In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52 1.08 W/kg) was delivered to 8...In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52 1.08 W/kg) was delivered to 8-week-old Wistar rats 2 hours per day for 1 month, behavioral changes were examined using the Morris water maze. Compared with the sham-irradiated rats, the irradiated rats exhibited impaired performance. Morphological changes were investigated by examining synaptic ultrastructural changes in the hippocampus. Using the physical dissector technique, the number of pyramidal neurons, the synaptic profiles, and the length of postsynaptic densities in the CA1 region were quantified stereologically. The morphological changes included mitochondrial degenerations, fewer synapses, and shorter postsynaptic densities in the radiated rats. These findings indicate that mobile phone radiation can significantly impair spatial learning and reference memory and induce morphological changes in the hippocampal CA1 region.展开更多
基金supported by the Major Project of Ningbo Science and Technology Innovation 2025(2021Z092)the Defense Industrial Technology Development Program(JCKY2021513B001).
文摘Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.
文摘The study characterized the curing behaviors of phenol formaldehyde(PF)resin under different vacuum degrees and explored the properties of 9-ply plywood panels hot-pressed under both vacuum and atmospheric conditions.The changes in core temperature and moisture content of the plywood mats during hot pressing were investigated as well.It was found that the gel times and gel temperatures of PF resin decreased with the increase of vacuum degree using a self-made device.FTIR spectra indicated the degree of polycondensation of hydroxymethyl gradu-ally increased with the increase in temperature.It was also observed that a higher degree of vacuum led to a slower polycondensation reaction rate of PF resin.During different hot-pressing processes,the bonding strengths in the innermost and uppermost gluelines of the vacuum hot-pressed plywood panels were up to 30%–50%higher than their counterparts of conventional hot-pressed products.A less difference in the bonding strengths between these two gluelines was also observed for vacuum hot-pressed products.In addition,the core of vacuum hot-pressed plywood was found to have a greater heating rate and higher temperature at thefinal stage of hot pressing,which was beneficial to cure the PF resin.The results from this study indicate a promising potential of introducing a vacuum during hot pressing to improve the quality and productivity of plywood products and provide a basis for adopting vacuum to hot press wood composites.
基金supported by“111”Project(B18062)Fundamental Research Funds for the Central Universities(2019CDQYTM028).
文摘In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized.
基金supported by the Natural Science Foundation of Hebei Province,No. C2007000921
文摘In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52 1.08 W/kg) was delivered to 8-week-old Wistar rats 2 hours per day for 1 month, behavioral changes were examined using the Morris water maze. Compared with the sham-irradiated rats, the irradiated rats exhibited impaired performance. Morphological changes were investigated by examining synaptic ultrastructural changes in the hippocampus. Using the physical dissector technique, the number of pyramidal neurons, the synaptic profiles, and the length of postsynaptic densities in the CA1 region were quantified stereologically. The morphological changes included mitochondrial degenerations, fewer synapses, and shorter postsynaptic densities in the radiated rats. These findings indicate that mobile phone radiation can significantly impair spatial learning and reference memory and induce morphological changes in the hippocampal CA1 region.