Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n w...Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n white neutron source),which was completed in March 2018.The Back-n neutron beam is very intense,at approximately 29107 n/cm2/s at 55 m from the target,and has a nominal proton beam with a power of 100 kW in the CSNS-I phase and a kinetic energy of 1.6 GeV and a thick tungsten target in multiple slices with modest moderation from the cooling water through the slices.In addition,the excellent energy spectrum spanning from 0.5 eV to 200 MeV,and a good time resolution related tothe time-of-flight measurements make it a typical white neutron source for nuclear data measurements;its overall performance is among that of the best white neutron sources in the world.Equipped with advanced spectrometers,detectors,and application utilities,the Back-n facility can serve wide applications,with a focus on neutron-induced cross-sectional measurements.This article presents an overview of the neutron beam characteristics,the experimental setups,and the ongoing applications at Backn.展开更多
The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurem...The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.展开更多
中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室...中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility,GTAF),该装置用28块六棱BaF_(2)晶体和12块五棱BaF_(2)晶体构成了外径25 cm,内径10 cm的球壳,覆盖了95.2%的立体角.利用GTAF在中国散裂中子源Back-n束线上,测量了197Au(n,γ)的反应截面数据.测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除,随后结合对^(nat)C及空样品的测量数据对本底进行了分析及扣除,获得了197Au俘获反应的产额,利用SAMMY程序拟合得到了^(197)Au在1—100 e V的共振能量、中子共振宽度和伽马共振宽度参数.实验测量结果与ENDF/B-VIII.0数据库符合良好,其共振参数存在一定差异,分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关,这也是下一步工作的重点.展开更多
To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The m...To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.展开更多
Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental compositi...Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental composition of an object.The back-streaming neutron line(Back-n)is a newly built time-of-flight facility at the China Spallation Neutron Source(CSNS)that provides neutrons in the eV to 300 MeV range.A feasibility study of the NRTA method for nuclide identification was conducted at the CSNS Back-n via two test experiments.The results demonstrate that it is feasible to identify different elements and isotopes in samples using the NRTA method at Back-n.This study reveals its potential future applications.展开更多
Neutron resonance imaging(NRI)has recently emerged as an appealing technique for neutron radiography.Its complexity surpasses that of conventional transmission imaging,as it requires a high demand for both a neutron s...Neutron resonance imaging(NRI)has recently emerged as an appealing technique for neutron radiography.Its complexity surpasses that of conventional transmission imaging,as it requires a high demand for both a neutron source and detector.Consequently,the progression of NRI technology has been sluggish since its inception in the 1980s,particularly considering the limited studies analyzing the neutron energy range above keV.The white neutron source(Back-n)at the China Spallation Neutron Source(CSNS)provides favorable beam conditions for the development of the NRI technique over a wide neutron energy range from eV to MeV.Neutron-sensitive microchannel plates(MCP)have emerged as a cutting-edge tool in the field of neutron detection owing to their high temporal and spatial resolutions,high detection efficiency,and low noise.In this study,we report the development of a 10B-doped MCP detector,along with its associated electronics,data processing system,and NRI experiments at the Back-n.Individual heavy elements such as gold,silver,tungsten,and indium can be easily identified in the transmission images by their characteristic resonance peaks in the 1–100 eV energy range;the more difficult medium-weight elements such as iron,copper,and aluminum with resonance peaks in the 1–100 keV energy range can also be identified.In particular,results in the neutron energy range of dozens of keV(Aluminum)are reported here for the first time.展开更多
Neutron-sensitive microchannel plates(nMCPs)have applications in neutron detection,including energy spectrum measurements,neutron-induced cross sections,and neutron imaging.10B-doped MCPs(B-MCPs)have attracted signifi...Neutron-sensitive microchannel plates(nMCPs)have applications in neutron detection,including energy spectrum measurements,neutron-induced cross sections,and neutron imaging.10B-doped MCPs(B-MCPs)have attracted significant attention owing to their potential for exhibiting a high neutron detection efficiency over a large neutron energy range.Good spatial and temporal resolutions are useful for neutron energy-resolved imaging.However,their practical applications still face many technical challenges.In this study,a B-MCP with 10 mol%10B was tested for its response to wide-energy neutrons from eV to MeV at the Back-n white neutron source at the China Spallation Neutron Source.The neutron detection efficiency was calibrated at 1 eV,which is approximately 300 times that of an ordinary MCP and indicates the success of 10 B doping.The factors that caused the reduction in the detection efficiency were simulated and discussed.The neutron energy spectrum obtained using B-MCP was compared with that obtained by other measurement methods,and showed very good consistency for neutron energies below tens of keV.The response is more complicated at higher neutron energy,at which point the elastic and nonelastic reactions of all nuclides of B-MCP gradually become dominant.This is beneficial for the detection of neutrons,as it compensates for the detection efficiency of B-MCP for high-energy neutrons.展开更多
As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent propertie...As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.展开更多
The strength of microwave(MW)electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter–Towns(EIT-AT)technique,when its frequency is resonant or nearl...The strength of microwave(MW)electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter–Towns(EIT-AT)technique,when its frequency is resonant or nearly-resonant with the Rydberg transition frequency.As the detuning of MW field increases,one of the transmission peaks(single peak)is easier to measure due to its increased amplitude.It can be found that the central symmetry point of the two transmission peaks f_(1/2)is only related to the detuning of MW field△_(MW)and central symmetry point f_(0)of resonant MW field,satisfying the relation f_(1/2)=△_(MW)/2+f_(0).Thus,we demonstrate a single transmission peak method that the MW E-field can be determined by interval between the position of single peak and f_(1/2).We use this method to measure continuous frequencies in a band from-200 MHz to 200 MHz of the MW field.The experimental results and theoretical analysis are presented to describe the effectiveness of this method.For 50 MHz<△_(MW)<200 MHz,this method solves the problem that the AT splitting cannot be measured by using the standard EIT-AT techniques or multiple atomic-level Rydberg atom schemes.展开更多
目的建立一种应用超高效液相色谱法同时测定饮料中14种着色剂、甜味剂和防腐剂的分析方法。方法样品经ZOXBAX SB-C_(18)色谱柱分离,以甲醇和100mmol/L磷酸二氢铵溶液为流动相进行梯度洗脱,流速0.2mL/min,柱温35℃。采用二极管阵列检测器...目的建立一种应用超高效液相色谱法同时测定饮料中14种着色剂、甜味剂和防腐剂的分析方法。方法样品经ZOXBAX SB-C_(18)色谱柱分离,以甲醇和100mmol/L磷酸二氢铵溶液为流动相进行梯度洗脱,流速0.2mL/min,柱温35℃。采用二极管阵列检测器,在190~600nm波长下进行扫描,230nm和200nm波长下进行检测,外标法定量。结果在最佳色谱条件下,这14种食品添加剂可在20min内有效分离,标准曲线线性关系良好(r>0.996)。平均回收率为92.7%~97.1%,相对标准偏差为0.61%~2.54%。当取样量为5g,稀释体积为25mL时,检出限(limits of detection,LODs)为0.3~0.6mg/kg。结论建立的方法可实现对饮料中多种着色剂、甜味剂和防腐剂的同时检测,具有快速、准确、灵敏的特点。展开更多
基金This work was jointly supported by the National Key Research and Development Program of China(No.2016YFA0401600)National Natural Science Foundation of China(Nos.11235012 and 12035017)+1 种基金the CSNS Engineering Projectthe Back-n Collaboration Consortium fund。
文摘Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n white neutron source),which was completed in March 2018.The Back-n neutron beam is very intense,at approximately 29107 n/cm2/s at 55 m from the target,and has a nominal proton beam with a power of 100 kW in the CSNS-I phase and a kinetic energy of 1.6 GeV and a thick tungsten target in multiple slices with modest moderation from the cooling water through the slices.In addition,the excellent energy spectrum spanning from 0.5 eV to 200 MeV,and a good time resolution related tothe time-of-flight measurements make it a typical white neutron source for nuclear data measurements;its overall performance is among that of the best white neutron sources in the world.Equipped with advanced spectrometers,detectors,and application utilities,the Back-n facility can serve wide applications,with a focus on neutron-induced cross-sectional measurements.This article presents an overview of the neutron beam characteristics,the experimental setups,and the ongoing applications at Backn.
基金supported by the National Natural Science Foundation of China(Nos.11675155,11790321,and 12075216)the National Key Research and Development Plan(No.2016YFA0401603).
文摘The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.
文摘中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility,GTAF),该装置用28块六棱BaF_(2)晶体和12块五棱BaF_(2)晶体构成了外径25 cm,内径10 cm的球壳,覆盖了95.2%的立体角.利用GTAF在中国散裂中子源Back-n束线上,测量了197Au(n,γ)的反应截面数据.测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除,随后结合对^(nat)C及空样品的测量数据对本底进行了分析及扣除,获得了197Au俘获反应的产额,利用SAMMY程序拟合得到了^(197)Au在1—100 e V的共振能量、中子共振宽度和伽马共振宽度参数.实验测量结果与ENDF/B-VIII.0数据库符合良好,其共振参数存在一定差异,分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关,这也是下一步工作的重点.
基金supported by the National Key Research and Development Plan(No.2016YFA0401603)the National Natural Science Foundation of China(No.11675155)
文摘To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.
基金This work was supported by the National Natural Science Foundation of China(No.12035017)Youth Innovation Promotion Association CAS(No.2023014)Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515010360 and 2022B1515120032).
文摘Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental composition of an object.The back-streaming neutron line(Back-n)is a newly built time-of-flight facility at the China Spallation Neutron Source(CSNS)that provides neutrons in the eV to 300 MeV range.A feasibility study of the NRTA method for nuclide identification was conducted at the CSNS Back-n via two test experiments.The results demonstrate that it is feasible to identify different elements and isotopes in samples using the NRTA method at Back-n.This study reveals its potential future applications.
基金supported by the National Natural Science Foundation of China(No.12035017)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030074)。
文摘Neutron resonance imaging(NRI)has recently emerged as an appealing technique for neutron radiography.Its complexity surpasses that of conventional transmission imaging,as it requires a high demand for both a neutron source and detector.Consequently,the progression of NRI technology has been sluggish since its inception in the 1980s,particularly considering the limited studies analyzing the neutron energy range above keV.The white neutron source(Back-n)at the China Spallation Neutron Source(CSNS)provides favorable beam conditions for the development of the NRI technique over a wide neutron energy range from eV to MeV.Neutron-sensitive microchannel plates(MCP)have emerged as a cutting-edge tool in the field of neutron detection owing to their high temporal and spatial resolutions,high detection efficiency,and low noise.In this study,we report the development of a 10B-doped MCP detector,along with its associated electronics,data processing system,and NRI experiments at the Back-n.Individual heavy elements such as gold,silver,tungsten,and indium can be easily identified in the transmission images by their characteristic resonance peaks in the 1–100 eV energy range;the more difficult medium-weight elements such as iron,copper,and aluminum with resonance peaks in the 1–100 keV energy range can also be identified.In particular,results in the neutron energy range of dozens of keV(Aluminum)are reported here for the first time.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030074)the National Natural Science Foundation of China(No.12035017)。
文摘Neutron-sensitive microchannel plates(nMCPs)have applications in neutron detection,including energy spectrum measurements,neutron-induced cross sections,and neutron imaging.10B-doped MCPs(B-MCPs)have attracted significant attention owing to their potential for exhibiting a high neutron detection efficiency over a large neutron energy range.Good spatial and temporal resolutions are useful for neutron energy-resolved imaging.However,their practical applications still face many technical challenges.In this study,a B-MCP with 10 mol%10B was tested for its response to wide-energy neutrons from eV to MeV at the Back-n white neutron source at the China Spallation Neutron Source.The neutron detection efficiency was calibrated at 1 eV,which is approximately 300 times that of an ordinary MCP and indicates the success of 10 B doping.The factors that caused the reduction in the detection efficiency were simulated and discussed.The neutron energy spectrum obtained using B-MCP was compared with that obtained by other measurement methods,and showed very good consistency for neutron energies below tens of keV.The response is more complicated at higher neutron energy,at which point the elastic and nonelastic reactions of all nuclides of B-MCP gradually become dominant.This is beneficial for the detection of neutrons,as it compensates for the detection efficiency of B-MCP for high-energy neutrons.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0401503 and 2018YFA0305700)the National Natural Science Foundation of China(Grant No.11575288)+4 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2016006)the Key Research Platforms and Research Projects of Universities in Guangdong Province,China(Grant No.2018KZDXM062)the Guangdong Innovative&Entrepreneurial Research Team Program,China(Grant No.2016ZT06C279)the Shenzhen Peacock Plan,China(Grant No.KQTD2016053019134356)the Shenzhen Development&Reform Commission Foundation for Novel Nano-Material Sciences,China,the Research Platform for Crystal Growth&Thin-Film Preparation at SUST,China,and the Shenzhen Development and Reform Commission Foundation for Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressure,China.
文摘As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFF0603704)the National Natural Science Foundation of China(Grant No.62071443)。
文摘The strength of microwave(MW)electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter–Towns(EIT-AT)technique,when its frequency is resonant or nearly-resonant with the Rydberg transition frequency.As the detuning of MW field increases,one of the transmission peaks(single peak)is easier to measure due to its increased amplitude.It can be found that the central symmetry point of the two transmission peaks f_(1/2)is only related to the detuning of MW field△_(MW)and central symmetry point f_(0)of resonant MW field,satisfying the relation f_(1/2)=△_(MW)/2+f_(0).Thus,we demonstrate a single transmission peak method that the MW E-field can be determined by interval between the position of single peak and f_(1/2).We use this method to measure continuous frequencies in a band from-200 MHz to 200 MHz of the MW field.The experimental results and theoretical analysis are presented to describe the effectiveness of this method.For 50 MHz<△_(MW)<200 MHz,this method solves the problem that the AT splitting cannot be measured by using the standard EIT-AT techniques or multiple atomic-level Rydberg atom schemes.
文摘目的建立一种应用超高效液相色谱法同时测定饮料中14种着色剂、甜味剂和防腐剂的分析方法。方法样品经ZOXBAX SB-C_(18)色谱柱分离,以甲醇和100mmol/L磷酸二氢铵溶液为流动相进行梯度洗脱,流速0.2mL/min,柱温35℃。采用二极管阵列检测器,在190~600nm波长下进行扫描,230nm和200nm波长下进行检测,外标法定量。结果在最佳色谱条件下,这14种食品添加剂可在20min内有效分离,标准曲线线性关系良好(r>0.996)。平均回收率为92.7%~97.1%,相对标准偏差为0.61%~2.54%。当取样量为5g,稀释体积为25mL时,检出限(limits of detection,LODs)为0.3~0.6mg/kg。结论建立的方法可实现对饮料中多种着色剂、甜味剂和防腐剂的同时检测,具有快速、准确、灵敏的特点。