以渭干河-库车河绿洲(渭-库绿洲)为研究区,采用在机器学习方面具有明显优势的随机森林回归算法,对绿洲内的4种典型植被(棉花、芦苇、杨树、大枣)叶片的叶绿素相对含量(soil and plant analyzer development,SPAD)考。进行估算和验证。...以渭干河-库车河绿洲(渭-库绿洲)为研究区,采用在机器学习方面具有明显优势的随机森林回归算法,对绿洲内的4种典型植被(棉花、芦苇、杨树、大枣)叶片的叶绿素相对含量(soil and plant analyzer development,SPAD)考。进行估算和验证。首先基于"红边"处光谱信息丰富的哨兵2号(Sentinel-2)影像和由其衍生的一阶微分、二阶微分影像各提取23种对叶绿素敏感的宽波段光谱指数,加入3种影响植物生长的土壤参量(土壤含水量,土壤有机质,土壤电导率)作为影响叶片SPAD的特征变量,再根据以上特征变量对每种植被叶片各建立3种方案的SPAD估算模型,从而实现对绿洲内植被叶绿素的监测。结果表明:①影像经一阶微分再提取的植被指数相比原位光谱植被指数,在SPAD估测模型中起到了更重要的作用,在随机森林算法的重要性排序中位居前列;②4种植被叶片的SPAD估测模型都取得了不错的效果,芦苇叶片尤为显著,确定系数(R^2)达到了0.926;③分析对比3种方案下模型预测能力,方案3(包含土壤参量)的预测能力卓越〔2.143<相对百分比偏差(RPD)<2.692〕,其预测能力排序为:方案3>方案1>方案2,土壤属性和模型预测结果有较强的非线性相关。Sentinel-2数据具有理想的估算绿洲植被叶绿素含量的潜力,提供了一种高效、低成本、潜在高精度的方案来估算叶绿素含量,可为干旱区绿洲农业、生态系统实现更有效的保护和管理提供参考。展开更多
文摘命名实体识别(named entity recognition,NER)是自然语言处理中重要的基础任务,而中文命名实体识别(Chinese named entity recognition,CNER)因分词歧义和一词多义等问题使其尤显困难。针对这些问题,提出多头注意力机制(multi-heads attention mechanism,Multi-Attention)与字词融合的中文命名实体识别模型(CWA-CNER)。将汉语文本字向量与其在句中可能成词的词向量进行拼接,并将其送入长短时记忆网络(bidirectional long short-term memory neural network,BiLSTM)提取上下文语义信息,进而利用多头注意力机制捕获句中元素间联系的紧密程度,最后通过条件随机场(conditional random field,CRF)进行实体标注。该模型在Boson数据集,1998和2014年《人民日报》三种语料上进行实验,其F1值均达到90%以上,结果表明了模型的有效性。
文摘以渭干河-库车河绿洲(渭-库绿洲)为研究区,采用在机器学习方面具有明显优势的随机森林回归算法,对绿洲内的4种典型植被(棉花、芦苇、杨树、大枣)叶片的叶绿素相对含量(soil and plant analyzer development,SPAD)考。进行估算和验证。首先基于"红边"处光谱信息丰富的哨兵2号(Sentinel-2)影像和由其衍生的一阶微分、二阶微分影像各提取23种对叶绿素敏感的宽波段光谱指数,加入3种影响植物生长的土壤参量(土壤含水量,土壤有机质,土壤电导率)作为影响叶片SPAD的特征变量,再根据以上特征变量对每种植被叶片各建立3种方案的SPAD估算模型,从而实现对绿洲内植被叶绿素的监测。结果表明:①影像经一阶微分再提取的植被指数相比原位光谱植被指数,在SPAD估测模型中起到了更重要的作用,在随机森林算法的重要性排序中位居前列;②4种植被叶片的SPAD估测模型都取得了不错的效果,芦苇叶片尤为显著,确定系数(R^2)达到了0.926;③分析对比3种方案下模型预测能力,方案3(包含土壤参量)的预测能力卓越〔2.143<相对百分比偏差(RPD)<2.692〕,其预测能力排序为:方案3>方案1>方案2,土壤属性和模型预测结果有较强的非线性相关。Sentinel-2数据具有理想的估算绿洲植被叶绿素含量的潜力,提供了一种高效、低成本、潜在高精度的方案来估算叶绿素含量,可为干旱区绿洲农业、生态系统实现更有效的保护和管理提供参考。