In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical pro...In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical process, which is much more complex than in the classical case. Applications to simulated data and discussion of the obtained results are provided. This is, to the best of our knowledge, the first result providing a general goodness of fit test for non-weakly dependent data.展开更多
In this paper, we provide a method based on quantiles to estimate the parameters of a finite mixture of Fréchet distributions, for a large sample of strongly dependent data. This is a situation that appears when ...In this paper, we provide a method based on quantiles to estimate the parameters of a finite mixture of Fréchet distributions, for a large sample of strongly dependent data. This is a situation that appears when dealing with environmental data and there was a real need of such method. We validate our approach by means of estimation and goodness-of-fit testing over simulated data, showing an accurate performance.展开更多
We present a novel method to analyze extreme events of flows over manifolds called Peaks Over Manifold (POM). Here we show that under general and realistic hypotheses, the distribution of affectation measures converge...We present a novel method to analyze extreme events of flows over manifolds called Peaks Over Manifold (POM). Here we show that under general and realistic hypotheses, the distribution of affectation measures converges to a Generalized Pareto Distribution (GPD). The method is applicable to floods, ice cover extent, extreme rainfall or marine heatwaves. We present an application to a synthetic data set on tide height and to real ice cover data in Antartica.展开更多
Fisher-Tippet-Gnedenko classical theory shows that the normalized maximum of n iid random variables with distribution F belonging to a very wide class of functions, converges in law to an extremal distribution H, that...Fisher-Tippet-Gnedenko classical theory shows that the normalized maximum of n iid random variables with distribution F belonging to a very wide class of functions, converges in law to an extremal distribution H, that is determined by the tail of F. Extensions of this theory from the iid case to stationary and weak dependent sequences are well known from the work of Leadbetter, Lindgreen and Rootzén. In this paper, we present a very simple class of random processes that runs from iid sequences to non-stationary and strongly dependent processes, and we study the asymptotic behavior of its normalized maximum. More interesting, we show that when the process is strongly dependent, the asymptotic distribution is no longer an extremal one, but a mixture of extremal distributions. We present very simple theoretical and simulated examples of this result. This provides a simple framework to asymptotic approximations of extremes values not covered by classical extremal theory and its well-known extensions.展开更多
文摘In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical process, which is much more complex than in the classical case. Applications to simulated data and discussion of the obtained results are provided. This is, to the best of our knowledge, the first result providing a general goodness of fit test for non-weakly dependent data.
文摘In this paper, we provide a method based on quantiles to estimate the parameters of a finite mixture of Fréchet distributions, for a large sample of strongly dependent data. This is a situation that appears when dealing with environmental data and there was a real need of such method. We validate our approach by means of estimation and goodness-of-fit testing over simulated data, showing an accurate performance.
文摘We present a novel method to analyze extreme events of flows over manifolds called Peaks Over Manifold (POM). Here we show that under general and realistic hypotheses, the distribution of affectation measures converges to a Generalized Pareto Distribution (GPD). The method is applicable to floods, ice cover extent, extreme rainfall or marine heatwaves. We present an application to a synthetic data set on tide height and to real ice cover data in Antartica.
文摘Fisher-Tippet-Gnedenko classical theory shows that the normalized maximum of n iid random variables with distribution F belonging to a very wide class of functions, converges in law to an extremal distribution H, that is determined by the tail of F. Extensions of this theory from the iid case to stationary and weak dependent sequences are well known from the work of Leadbetter, Lindgreen and Rootzén. In this paper, we present a very simple class of random processes that runs from iid sequences to non-stationary and strongly dependent processes, and we study the asymptotic behavior of its normalized maximum. More interesting, we show that when the process is strongly dependent, the asymptotic distribution is no longer an extremal one, but a mixture of extremal distributions. We present very simple theoretical and simulated examples of this result. This provides a simple framework to asymptotic approximations of extremes values not covered by classical extremal theory and its well-known extensions.