River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss...River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss of crops, and infrastructure damage. The Gorai River, situated on the right bank of the Ganges, is a significant branch of the river that flows into the Bay of Bengal via the Mathumati and Baleswar rivers. The erosion of the banks of the Gorai River in Kushtia district is not a recent occurrence. Local residents have been dealing with this issue for the past hundred years, and according to the elderly members of the community, the erosion has become more severe activities. Therefore, the main objective of this research is to quantify river bank erosion and accretion and bankline shifting from 2003 to 2022 using multi-temporal Landsat images data with GIS and remote sensing technique. Bank-line migration occurs as a result of the interplay and interconnectedness of various factors such as the degree of river-related processes such as erosion, transportation, and deposition, the amount of water in the river during the high season, the geological and soil makeup, and human intervention in the river. The results show that the highest eroded area was 4.6 square kilometers during the period of 2016 to 2019, while the highest accreted area was 7.12 square kilometers during the period of 2013 to 2016. However, the erosion and accretion values fluctuated from year to year.展开更多
This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance sur...This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance survey. Findings reveal that 30% of individuals rely on surface water (hand-tube wells, rivers, and ponds), prioritized as canal > river > pond, while 70% depend on groundwater (subterranean electric motor, deep tube-well). Drinking water is generally sufficient, with 95% reporting adequacy throughout the year. About 45% use hand tube-well water, 28% use deep tube-well water, and 11% use supply tap water for various purposes. Bathing trends include underground water through electric motor > pond > hand tube-well water > river, while for cooking, the order is underground water through electric motor > pond > hand tube-well water > river. Toilet water supply ranks as supply tap water > hand tube-well water > deep tube-well water. Although sanitation awareness is high, some lack knowledge of good hygiene practices. After defecating, handwashing methods include soap, ash, soil, or water. Children’s waste disposal varies, with some discarding it in open areas. Approximately 40% suffer from diseases like Diarrhoea due to unsafe water, primarily affecting children and elders. Training exists, but a significant portion lacks sanitation education. Dry skin or exposure to cold water may cause temporary irritation. Local government involvement in sanitation efforts is less active compared to non-governmental organizations. Results emphasize the need to enhance community awareness of safe water supplies and sanitation practices. .展开更多
Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particular...Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic.展开更多
The experiment was conducted at Plant Genetic Resources Centre, Bangladesh Agricultural Research Institute (BARI) and the genotypes were collected from Chapainawabganj, the most mango variability rich district in Bang...The experiment was conducted at Plant Genetic Resources Centre, Bangladesh Agricultural Research Institute (BARI) and the genotypes were collected from Chapainawabganj, the most mango variability rich district in Bangladesh. The molecular characters of mango germplasm were assessed by using six simple sequence repeat (SSR) markers. Polymerase chain reaction (PCR) amplification of the DNA isolated from 60 mango germplasm with 6 SSR primers was performed. The sizes of the alleles detected ranged from 112 to 221 bp. SSRs exhibited moderate values of polymorphic information content (PIC) range of 0.9405 to 0.6501. Genetic distances (D) between varieties were computed from combined data of the 6 primers, ranging from 0.5000 to 1.0000. Moderate degree of genetic diversity was obtained where the highest level of gene diversity value was noted 0.9433 in loci MIGA179 and the lowest level of gene diversity value was computed 0.6683 in loci MIGA253 with a mean diversity of 0.8842. The dendrogram generated from the unweighed pair group arithmetic average (UPGMA) cluster analysis broadly placed 60 mango cultivars into ten major clusters. The cluster size varied from 1 to 12 and cluster-VI was the largest cluster comprising of 9 cultivars. The tendency of clustering among mango cultivars revealed that they have strong affinity towards further breeding programme.展开更多
文摘River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss of crops, and infrastructure damage. The Gorai River, situated on the right bank of the Ganges, is a significant branch of the river that flows into the Bay of Bengal via the Mathumati and Baleswar rivers. The erosion of the banks of the Gorai River in Kushtia district is not a recent occurrence. Local residents have been dealing with this issue for the past hundred years, and according to the elderly members of the community, the erosion has become more severe activities. Therefore, the main objective of this research is to quantify river bank erosion and accretion and bankline shifting from 2003 to 2022 using multi-temporal Landsat images data with GIS and remote sensing technique. Bank-line migration occurs as a result of the interplay and interconnectedness of various factors such as the degree of river-related processes such as erosion, transportation, and deposition, the amount of water in the river during the high season, the geological and soil makeup, and human intervention in the river. The results show that the highest eroded area was 4.6 square kilometers during the period of 2016 to 2019, while the highest accreted area was 7.12 square kilometers during the period of 2013 to 2016. However, the erosion and accretion values fluctuated from year to year.
文摘This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance survey. Findings reveal that 30% of individuals rely on surface water (hand-tube wells, rivers, and ponds), prioritized as canal > river > pond, while 70% depend on groundwater (subterranean electric motor, deep tube-well). Drinking water is generally sufficient, with 95% reporting adequacy throughout the year. About 45% use hand tube-well water, 28% use deep tube-well water, and 11% use supply tap water for various purposes. Bathing trends include underground water through electric motor > pond > hand tube-well water > river, while for cooking, the order is underground water through electric motor > pond > hand tube-well water > river. Toilet water supply ranks as supply tap water > hand tube-well water > deep tube-well water. Although sanitation awareness is high, some lack knowledge of good hygiene practices. After defecating, handwashing methods include soap, ash, soil, or water. Children’s waste disposal varies, with some discarding it in open areas. Approximately 40% suffer from diseases like Diarrhoea due to unsafe water, primarily affecting children and elders. Training exists, but a significant portion lacks sanitation education. Dry skin or exposure to cold water may cause temporary irritation. Local government involvement in sanitation efforts is less active compared to non-governmental organizations. Results emphasize the need to enhance community awareness of safe water supplies and sanitation practices. .
文摘Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic.
文摘The experiment was conducted at Plant Genetic Resources Centre, Bangladesh Agricultural Research Institute (BARI) and the genotypes were collected from Chapainawabganj, the most mango variability rich district in Bangladesh. The molecular characters of mango germplasm were assessed by using six simple sequence repeat (SSR) markers. Polymerase chain reaction (PCR) amplification of the DNA isolated from 60 mango germplasm with 6 SSR primers was performed. The sizes of the alleles detected ranged from 112 to 221 bp. SSRs exhibited moderate values of polymorphic information content (PIC) range of 0.9405 to 0.6501. Genetic distances (D) between varieties were computed from combined data of the 6 primers, ranging from 0.5000 to 1.0000. Moderate degree of genetic diversity was obtained where the highest level of gene diversity value was noted 0.9433 in loci MIGA179 and the lowest level of gene diversity value was computed 0.6683 in loci MIGA253 with a mean diversity of 0.8842. The dendrogram generated from the unweighed pair group arithmetic average (UPGMA) cluster analysis broadly placed 60 mango cultivars into ten major clusters. The cluster size varied from 1 to 12 and cluster-VI was the largest cluster comprising of 9 cultivars. The tendency of clustering among mango cultivars revealed that they have strong affinity towards further breeding programme.