After short introducing the crucial role of e‐fuels to meet net‐zero emissions targets,this perspective paper discusses the differences between reactive catalysis(electro‐,photo‐and plasma‐catalysis,with focus on...After short introducing the crucial role of e‐fuels to meet net‐zero emissions targets,this perspective paper discusses the differences between reactive catalysis(electro‐,photo‐and plasma‐catalysis,with focus on the first for conciseness)and thermal catalysis used at most.The main point is to evidence that to progress in producing e‐fuels,the gap is not in terms of scaling‐up and pilot testing,but rather in the fundamental needs to turn the current approach and methodologies to develop reactive catalysis,including from a mechanistic perspective,to go beyond the current methods largely derived from thermal catalysis.Developing thus new fundamental bases to understand reactive catalysis is the challenge to accelerate the progress in this area to enable the potential role towards a sustainable net‐zero emissions future.Some novel aspects are highlighted,but the general aim is rather to stimulate discussion in rethinking catalysis from an alternative perspective.展开更多
基金supported by EU with ERC Synergy SCOPE(Surface-Confined Fast-modulated Plasma for Process and Energy Intensification in Small Molecules Conversion,810182)ProjectItalian MUR by PRIN 2017 Projects MULTI-e (Multielectron Transfer for the Conversion of Small Moleculesan Enabling Technology for the Chemical Use of Renewable Energy,20179337R7)CO_(2) ONLY (CO_(2) as Only Source of Carbons for Monomers and PolymersA Step Forwards Circular economy) Project,017WR2LRS
文摘After short introducing the crucial role of e‐fuels to meet net‐zero emissions targets,this perspective paper discusses the differences between reactive catalysis(electro‐,photo‐and plasma‐catalysis,with focus on the first for conciseness)and thermal catalysis used at most.The main point is to evidence that to progress in producing e‐fuels,the gap is not in terms of scaling‐up and pilot testing,but rather in the fundamental needs to turn the current approach and methodologies to develop reactive catalysis,including from a mechanistic perspective,to go beyond the current methods largely derived from thermal catalysis.Developing thus new fundamental bases to understand reactive catalysis is the challenge to accelerate the progress in this area to enable the potential role towards a sustainable net‐zero emissions future.Some novel aspects are highlighted,but the general aim is rather to stimulate discussion in rethinking catalysis from an alternative perspective.