期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ASYMPTOTIC NORMALITY OF SOME ESTIMATORS IN A FIXED-DESIGN SEMIPARAMETRIC REGRESSION MODEL WITH LINEAR TIME SERIES ERRORS 被引量:10
1
作者 JinhongYOU CHENMin gemaichen 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第4期511-522,共12页
Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is con... Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is contained in R are fixed design points, β =(β_1,β_2,···,β_p)′ is an unknown parameter vector, g(·) is an unknown bounded real-valuedfunction defined on a compact subset T of the real line R, and ε_k is a linear process given byε_k = ∑ from j=0 to ∞ of ψ_je_(k-j), ψ_0=1, where ∑ from j=0 to ∞ of |ψ_j| < ∞, and e_j,j=0, +-1, +-2,···, ard i.i.d. random variables. In this paper we establish the asymptoticnormality of the least squares estimator of β, a smooth estimator of g(·), and estimators of theautocovariance and autocorrelation functions of the linear process ε_k. 展开更多
关键词 semiparametric regression model fixed-design asymptotic normality lineartime series errors
原文传递
Iterative Weighted Semiparametric Least Squares Estimation in Repeated Measurement Partially Linear Regression Models
2
作者 gemaichen Jin-hongYou 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第2期177-192,共16页
Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric... Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions. 展开更多
关键词 Partially linear regression model heteroscedastic error variance iterativeweighted semiparametric least squares estimator (IWSLSE) asymptotic normality
原文传递
Uniform Convergence Rate of Estimators of Autocovariances in Partly Linear Regression Models with Correlated Errors
3
作者 Jin-hongYou gemaichen +1 位作者 MinChen ue-leiJiang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第3期363-370,共8页
Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , &#946; = (&#946; <SUB>1<... Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , &#946; = (&#946; <SUB>1</SUB>, ··· , &#946; <SUB>p </SUB>)' is an unknown parameter vector, g(·) is an unknown function and {&#949; <SUB>i </SUB>} is a linear process, i.e., , where e <SUB>j </SUB>are i.i.d. random variables with zero mean and variance . Drawing upon B-spline estimation of g(·) and least squares estimation of &#946;, we construct estimators of the autocovariances of {&#949; <SUB>i </SUB>}. The uniform strong convergence rate of these estimators to their true values is then established. These results not only are a compensation for those of [23], but also have some application in modeling error structure. When the errors {&#949; <SUB>i </SUB>} are an ARMA process, our result can be used to develop a consistent procedure for determining the order of the ARMA process and identifying the non-zero coeffcients of the process. Moreover, our result can be used to construct the asymptotically effcient estimators for parameters in the ARMA error process. 展开更多
关键词 Uniform strong convergence rate autocovariance and autocorrelation B-spline estimation correlated error partly linear regression model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部