流量分类是优化网络服务质量的基础与关键.机器学习算法利用数据流统计特征分类流量,对于识别加密私有协议流量具有重要意义.然而,特征偏置和类别不平衡是基于机器学习的流量分类研究所面临的两大挑战.特征偏置是指一些数据流统计特征...流量分类是优化网络服务质量的基础与关键.机器学习算法利用数据流统计特征分类流量,对于识别加密私有协议流量具有重要意义.然而,特征偏置和类别不平衡是基于机器学习的流量分类研究所面临的两大挑战.特征偏置是指一些数据流统计特征在提高部分应用识别准确率的同时也降低了另外一部分应用识别的准确率.类别不平衡是指机器学习流量分类器对样本数较少的应用识别的准确率较低.为解决上述问题,提出了基于集成聚类的流量分类架构(traffic classification framework based on ensemble clustering,简称TCFEC).TCFEC由多个基于不同特征子空间聚类的基分类器和一个最优决策部件构成,能够提高流量分类的准确率.具体而言,与传统的机器学习流量分类器相比,TCFEC的平均流准确率最高提升5%,字节准确率最高提升6%.展开更多
基金financially supported by the National Key R&D Program of China (2021YFA1500900)the National Natural Science Foundation of China (22102053, 21825201 and U19A2017)+5 种基金the Provincial Natural Science Foundation of Hunan (2016TP1009, 2020JJ5045 and 2022JJ10006)the Science and Technology Innovation Program of Hunan Province (2022RC1036)the Major Program of the Natural Science Foundation of Hunan Province (2021JC0006)Hunan Graduate Education Innovation Project and Professional Ability Improvement Project (CX20210400)the Basic and Applied Basic Research Foundation of Guangdong Province-Regional joint fund project (2021B1515120024)Shenzhen Science and Technology Programs (JCYJ20200109110416441)。
文摘流量分类是优化网络服务质量的基础与关键.机器学习算法利用数据流统计特征分类流量,对于识别加密私有协议流量具有重要意义.然而,特征偏置和类别不平衡是基于机器学习的流量分类研究所面临的两大挑战.特征偏置是指一些数据流统计特征在提高部分应用识别准确率的同时也降低了另外一部分应用识别的准确率.类别不平衡是指机器学习流量分类器对样本数较少的应用识别的准确率较低.为解决上述问题,提出了基于集成聚类的流量分类架构(traffic classification framework based on ensemble clustering,简称TCFEC).TCFEC由多个基于不同特征子空间聚类的基分类器和一个最优决策部件构成,能够提高流量分类的准确率.具体而言,与传统的机器学习流量分类器相比,TCFEC的平均流准确率最高提升5%,字节准确率最高提升6%.