BACKGROUND Mesenchymal stem cells(MSC)of bone marrow are the progenitor of osteoblasts and adipocytes.MSC tend to differentiate into adipocytes,instead of osteoblasts,with aging.This favors the loss of bone mass and d...BACKGROUND Mesenchymal stem cells(MSC)of bone marrow are the progenitor of osteoblasts and adipocytes.MSC tend to differentiate into adipocytes,instead of osteoblasts,with aging.This favors the loss of bone mass and development of osteoporosis.Hypoxia induces hypoxia inducible factor 1αgene encoding transcription factor,which regulates the expression of genes related to energy metabolism and angiogenesis.That allows a better adaptation to low O2 conditions.Sustained hypoxia has negative effects on bone metabolism,favoring bone resorption.Yet,surprisingly,cyclic hypoxia(CH),short times of hypoxia followed by long times in normoxia,can modulate MSC differentiation and improve bone health in aging.AIM To evaluate the CH effect on MSC differentiation,and whether it improves bone mineral density in elderly.METHODS MSC cultures were induced to differentiate into osteoblasts or adipocytes,in CH(3%O2 for 1,2 or 4 h,4 d a week).Extracellular-matrix mineralization and lipid-droplet formation were studied in MSC induced to differentiate into osteoblast or adipocytes,respectively.In addition,gene expression of marker genes,for osteogenesis or adipogenesis,have been quantified by quantitative real time polymerase chain reaction.The in vivo studies with elderly(>75 years old;n=10)were carried out in a hypoxia chamber,simulating an altitude of 2500 m above sea level,or in normoxia,for 18 wk(36 CH sessions of 16 min each).Percentages of fat mass and bone mineral density from whole body,trunk and right proximal femur(femoral,femoral neck and trochanter)were assessed,using dual-energy X-ray absorptiometry.RESULTS CH(4 h of hypoxic exposure)inhibited extracellular matrix mineralization and lipid-droplet formation in MSC induced to differentiate into osteoblasts or adipocytes,respectively.However,both parameters were not significantly affected by the other shorter hypoxia times assessed.The longest periods of hypoxia downregulated the expression of genes related to extracellular matrix formation,in MSC induced to differentiate into展开更多
基金Supported by Government of Extremadura GAEDAF Research Group,No.GR18003Ministerio de Educación,Cultura y Deporte,No.FPU15/00452and Instituto de Salud Carlos III,No.PI15/01857 and No.PI18/01659.
文摘BACKGROUND Mesenchymal stem cells(MSC)of bone marrow are the progenitor of osteoblasts and adipocytes.MSC tend to differentiate into adipocytes,instead of osteoblasts,with aging.This favors the loss of bone mass and development of osteoporosis.Hypoxia induces hypoxia inducible factor 1αgene encoding transcription factor,which regulates the expression of genes related to energy metabolism and angiogenesis.That allows a better adaptation to low O2 conditions.Sustained hypoxia has negative effects on bone metabolism,favoring bone resorption.Yet,surprisingly,cyclic hypoxia(CH),short times of hypoxia followed by long times in normoxia,can modulate MSC differentiation and improve bone health in aging.AIM To evaluate the CH effect on MSC differentiation,and whether it improves bone mineral density in elderly.METHODS MSC cultures were induced to differentiate into osteoblasts or adipocytes,in CH(3%O2 for 1,2 or 4 h,4 d a week).Extracellular-matrix mineralization and lipid-droplet formation were studied in MSC induced to differentiate into osteoblast or adipocytes,respectively.In addition,gene expression of marker genes,for osteogenesis or adipogenesis,have been quantified by quantitative real time polymerase chain reaction.The in vivo studies with elderly(>75 years old;n=10)were carried out in a hypoxia chamber,simulating an altitude of 2500 m above sea level,or in normoxia,for 18 wk(36 CH sessions of 16 min each).Percentages of fat mass and bone mineral density from whole body,trunk and right proximal femur(femoral,femoral neck and trochanter)were assessed,using dual-energy X-ray absorptiometry.RESULTS CH(4 h of hypoxic exposure)inhibited extracellular matrix mineralization and lipid-droplet formation in MSC induced to differentiate into osteoblasts or adipocytes,respectively.However,both parameters were not significantly affected by the other shorter hypoxia times assessed.The longest periods of hypoxia downregulated the expression of genes related to extracellular matrix formation,in MSC induced to differentiate into