通过优化汽轮机叶片的安装顺序,来减少安装后的残余不平衡量。对此提出一种阈值式迭代局部搜索(threshold iterative local search,TILS)算法,该算法在迭代局部搜索(iterative local search,ILS)算法基础上,采用阈值限定扰动与随机扰动...通过优化汽轮机叶片的安装顺序,来减少安装后的残余不平衡量。对此提出一种阈值式迭代局部搜索(threshold iterative local search,TILS)算法,该算法在迭代局部搜索(iterative local search,ILS)算法基础上,采用阈值限定扰动与随机扰动相结合的方法来跳出局部最优解,减少了平均到达局部最优解所需的迭代步数。实验证明,该方法可以在短时间内找到一个近似最优叶片排序组合,相对于ILS算法,搜索效率提高了20%以上。计算得到的合成质径积的近似最优解,相对于现有分组排序法、遗传算法、云自适应遗传算法(CAGA)等方法,分别减小到其最优解的0.33%~31%,且计算时间也大幅度减小。展开更多
文摘通过优化汽轮机叶片的安装顺序,来减少安装后的残余不平衡量。对此提出一种阈值式迭代局部搜索(threshold iterative local search,TILS)算法,该算法在迭代局部搜索(iterative local search,ILS)算法基础上,采用阈值限定扰动与随机扰动相结合的方法来跳出局部最优解,减少了平均到达局部最优解所需的迭代步数。实验证明,该方法可以在短时间内找到一个近似最优叶片排序组合,相对于ILS算法,搜索效率提高了20%以上。计算得到的合成质径积的近似最优解,相对于现有分组排序法、遗传算法、云自适应遗传算法(CAGA)等方法,分别减小到其最优解的0.33%~31%,且计算时间也大幅度减小。