Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in ...Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.展开更多
With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical...With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what's more, based on our team's work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.展开更多
Qidong(Jiangsu, China) has been of interest to cancer epidemiologists and biologists because, until recently, it was an endemic area for liver cancer, having amongst the highest incidence rates in the world. The estab...Qidong(Jiangsu, China) has been of interest to cancer epidemiologists and biologists because, until recently, it was an endemic area for liver cancer, having amongst the highest incidence rates in the world. The establishment of the Qidong Cancer Registry together with the Qidong Liver Cancer Institute in 1972 has charted the patterns of liver cancer incidence and mortality in a stable population throughout a period of enormous economic, social, and environmental changes as well as of improvements in health care delivery. Updated incidence trends in Qidong are described. Notably, the China age-standardized incidence rate for liver cancer has dropped by over 50% in the past several decades. Molecular epidemiologic and genomic deep sequencing studies have affirmed that infection with hepatitis B virus as well as dietary exposure to aflatoxins through contamination of dietary staples such as corn, and to microcystins–blue-green algal toxins found in ditch and pond water – were likely important etiologic factors that account for the high incidence of liver cancer in this region. Public health initiatives to facilitate universal vaccination of newborns against HBV and to improve drinking water sources in this rural area, as well as economic and social mandates serendipitously facilitating dietary diversity, have led to precipitous declines in exposures to these etiologic factors, concomitantly driving substantive declines in the liver cancer incidence seen now in Qidong. In this regard, Qidong serves as a template for the global impact that a package of intervention strategies may exert on cancer burden.展开更多
Water electrolysis has attracted a lot of attention in recent years for hydrogen production.CoP has been widely investigated as a traditional electrocatalyst for hydrogen evolution reaction(HER).However,the strong bon...Water electrolysis has attracted a lot of attention in recent years for hydrogen production.CoP has been widely investigated as a traditional electrocatalyst for hydrogen evolution reaction(HER).However,the strong bond strength of P-H bond and weak chemical stability are still the key problems in affecting catalytic performance of CoP.In this work,we synthesized rambutan-like CoP@Mo-Co-O hollow microspheres as HER electrocatalyst,solving the two problems of CoP as electrocatalyst.Benefiting from the unique three-dimensional space structure and interface effect between CoP and Mo-Co-O,the synthesized CoP@Mo-Co-O shows a small overpotential of 62 mV at the current density of 10 mA cm^-2 for HER,which is much lower than the corresponding overpotential of pure CoP microspheres(117 mV).Rambutan-like CoP@Mo-Co-O hollow microspheres also show robust long-term stability and excellent cycling stability.This work provides a new method for the design and improvement of non-precious HER electrocatalysts.展开更多
Cyclic voltammetry, chronoamperometry and chronopotentiometry were used toinvestigate the electrochemical behaviors of Bi(III) in Bi(NO_3)_3-LiClO_4-DMSO (dimethylsulfoxide)system on Pt and Cu electrodes. Experimental...Cyclic voltammetry, chronoamperometry and chronopotentiometry were used toinvestigate the electrochemical behaviors of Bi(III) in Bi(NO_3)_3-LiClO_4-DMSO (dimethylsulfoxide)system on Pt and Cu electrodes. Experimental results indicated that the electroreducation of Bi(III)to Bi(0) was irreversible on Pt and Cu electrodes. The diffusion coefficient and electron transfercoefficient of Bi(III) in 0.01 mol.L^(-1) Bi(NO_3)_3-0.l mol.L^(-1) LiClO_4-DMSO system at 303 Kwere 1.75 X 10^(-6) cm^2.s^1 and 0.147 respectively.展开更多
Pore structure reflected from capillary pressure curves plays an important role in low-permeability formation evaluation. It is a common way to construct capillary pressure curves by Nuclear Magnetic Resonance(NMR) ...Pore structure reflected from capillary pressure curves plays an important role in low-permeability formation evaluation. It is a common way to construct capillary pressure curves by Nuclear Magnetic Resonance(NMR) log. However, the method's efficiency will be severely affected if there is no NMR log data or it cannot reflect pore structure well. Therefore, on the basis of J function and diagenetic facies classification, a new empirical model for constructing capillary pressure curves from conventional logs is proposed here as a solution to the problem. This model includes porosity and the relative value of natural gamma rays as independent variables and the saturation of mercury injection as a dependent variable. According to the 51 core experimental data sets of three diagenetic facies from the bottom of the Upper Triassic in the western Ordos Basin, China, the model's parameters in each diagenetic facies are calibrated. Both self-checking and extrapolation tests show a positive effect, which demonstrates the high reliability of the proposed capillary pressure curve construction model. Based on the constructed capillary pressure curves, NMR T_2 spectra under fully brine-saturated conditions are mapped by a piecewise power function. A field study is then presented. Agreement can be seen between the mapped NMR T_2 spectra and the MRIL-Plog data in the location of the major peak, right boundary, distribution characteristics and T_2 logarithmic mean value. In addition, the capillary pressure curve construction model proposed in this paper is not affected by special log data or formation condition. It is of great importance in evaluating pore structure, predicting oil production and identifying oil layers through NMR log data in low-permeability sandstones.展开更多
CoS2 spheres were synthesized according to the previous study reported by Lifang Jiao and her collabora tots. The details are listed as follow ing: 1.65 mmol of COC12 6H20 was dissolved in absolute ethanol and then ...CoS2 spheres were synthesized according to the previous study reported by Lifang Jiao and her collabora tots. The details are listed as follow ing: 1.65 mmol of COC12 6H20 was dissolved in absolute ethanol and then was transferred into a 40 mL Teflon lined stainless steel autoclave, then 4.1 mmol of sulfur powder was added into above solution. The Teflon lined stainless steel auto was subsequently stirred for 30 min.展开更多
Abstract The polypyrrole(PPy)@NiCo hybrid nanotube arrays have been successfully fabricated as a high performance electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The strong electronic i...Abstract The polypyrrole(PPy)@NiCo hybrid nanotube arrays have been successfully fabricated as a high performance electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The strong electronic interactions between PPy and NiCo alloy are confirmed by X-ray photoelectron spectroscopy and Raman spectra. Because these interations can remarkably reduce the apparent activation energy (Ea) for HER and enhance the turnover frequency of catalysts, the electrocatalytic performance of PPy@NiCo hybrid nanotube arrays are significantly improved. The electrochemical tests show that the PPy@NiCo hybrid catalysts exhibit a low overpotential of-186 mV at 10.0 mA·cm^-2 and a small tafel slope of 88.6 mV·deg^-1 for HER in the alkaline solution. The PPy@NiCo hybrid nanotubes also exhibit high catalytic activity and high stability for HER.展开更多
Though water electrolysis is effective in generating high-quality hydrogen gas,it requires effective electrocatalysts for hydrogen evolution reaction(HER).CoS_2 have been considered as a promising HER electrocatalyst ...Though water electrolysis is effective in generating high-quality hydrogen gas,it requires effective electrocatalysts for hydrogen evolution reaction(HER).CoS_2 have been considered as a promising HER electrocatalyst because of its high ctalytic activity.However,the key limitation for CoS_2 nanomaterial as HER electrocatalyst is its poor stability,which may be due to the structural breakdown of CoS_2 nanostructure or the evolution of S during H_2 evolution in acid media.Coating porous carbon thin layer for protection from structural breakdown and evolution of S is a good way to improve catalytic stability.In addition,coating carbon layer can change electronic structure of CoS_2 for the moderated hydrogen adsorption energy,leading to enhanced catalytic activity.Here,CoS_2 yolk-shell spheres coated with carbon thin layers exhibit superior catalytic performance for HER with low overpotential,small Tafel slope,and excellent stability.展开更多
Nanostructured TiO2 has applications in solar cells, photocatalysts, and fast- charging, safe lithium ion batteries (LIBs). To meet the demand of high-capacity and high-rate LIBs with TiO2-based anodes, it is import...Nanostructured TiO2 has applications in solar cells, photocatalysts, and fast- charging, safe lithium ion batteries (LIBs). To meet the demand of high-capacity and high-rate LIBs with TiO2-based anodes, it is important to fine-tune the nanoarchitecture using a well-controlled synthesis approach. Herein, we report a new approach that involves epitaxial growth combined with topotactic conversion to synthesize a unique type of three-dimensional (3D) TiO2 nano- architecture that is assembled by well-oriented ultrathin nanobelts. The whole nanoarchitecture displays a 3D Chinese knot-like morphology; the core consists of robust perpendicular interwoven nanobelts and the shell is made of extended nanobelts. The nanobelts oriented in three perpendicular [001]A directions facilitate Li+ penetration and diffusion. Abundant anatase/TiO2-B interfaces provide a large amount of interfacial pseudocapacitance. A high and stable capacity of 130 mA.h.g-1 was obtained after 3,000 cycles at 10 A·g-1 (50 C), and the high-rate property of our material was greater than that of many recently reported high-rate TiO2 anodes. Our result provides, not only a novel synthesis strategy, but also a new type of 3D anatase TiO2 anode that may be useful in developing long-lasting and fast-charging batteries.展开更多
基金the Basic Research Program of Fujian Province (No. 2000-F-004).
文摘Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.
基金supported by the National Natural Science Foundation of China(Grant Nos.51173212&21273290)the National Basic Research Program of China("973"Project)(Grant No.2015CB932304)+4 种基金the Natural Science Foundations of Guangdong Province(Grant Nos.S2013020012833&S2013030013474)Fundamental Research Fund for the Central Universities(Grant No.13lgpy51)SRF for ROCS,SEM(Grant No.[2012]1707)the Project of High Level Talents in Higher School of Guangdong Province,and Open-End Fund of Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University)Ministry of Education,and the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120171110043)
文摘With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what's more, based on our team's work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.
基金supported by grants from the US National Institutes of Health (Grant No. R01 CA196610 and R35 CA197222)Chinese National Key Projects (Grant No. 2008ZX10002-015, 2008ZX10002-017, 2012ZX10002009, 2018ZX10732202-001)
文摘Qidong(Jiangsu, China) has been of interest to cancer epidemiologists and biologists because, until recently, it was an endemic area for liver cancer, having amongst the highest incidence rates in the world. The establishment of the Qidong Cancer Registry together with the Qidong Liver Cancer Institute in 1972 has charted the patterns of liver cancer incidence and mortality in a stable population throughout a period of enormous economic, social, and environmental changes as well as of improvements in health care delivery. Updated incidence trends in Qidong are described. Notably, the China age-standardized incidence rate for liver cancer has dropped by over 50% in the past several decades. Molecular epidemiologic and genomic deep sequencing studies have affirmed that infection with hepatitis B virus as well as dietary exposure to aflatoxins through contamination of dietary staples such as corn, and to microcystins–blue-green algal toxins found in ditch and pond water – were likely important etiologic factors that account for the high incidence of liver cancer in this region. Public health initiatives to facilitate universal vaccination of newborns against HBV and to improve drinking water sources in this rural area, as well as economic and social mandates serendipitously facilitating dietary diversity, have led to precipitous declines in exposures to these etiologic factors, concomitantly driving substantive declines in the liver cancer incidence seen now in Qidong. In this regard, Qidong serves as a template for the global impact that a package of intervention strategies may exert on cancer burden.
文摘Water electrolysis has attracted a lot of attention in recent years for hydrogen production.CoP has been widely investigated as a traditional electrocatalyst for hydrogen evolution reaction(HER).However,the strong bond strength of P-H bond and weak chemical stability are still the key problems in affecting catalytic performance of CoP.In this work,we synthesized rambutan-like CoP@Mo-Co-O hollow microspheres as HER electrocatalyst,solving the two problems of CoP as electrocatalyst.Benefiting from the unique three-dimensional space structure and interface effect between CoP and Mo-Co-O,the synthesized CoP@Mo-Co-O shows a small overpotential of 62 mV at the current density of 10 mA cm^-2 for HER,which is much lower than the corresponding overpotential of pure CoP microspheres(117 mV).Rambutan-like CoP@Mo-Co-O hollow microspheres also show robust long-term stability and excellent cycling stability.This work provides a new method for the design and improvement of non-precious HER electrocatalysts.
基金This project is financially supported by the Thousand-Hundred-Ten-talent Project Foundation of Guangdong Province Education Office (No. 00-079-421005)
文摘Cyclic voltammetry, chronoamperometry and chronopotentiometry were used toinvestigate the electrochemical behaviors of Bi(III) in Bi(NO_3)_3-LiClO_4-DMSO (dimethylsulfoxide)system on Pt and Cu electrodes. Experimental results indicated that the electroreducation of Bi(III)to Bi(0) was irreversible on Pt and Cu electrodes. The diffusion coefficient and electron transfercoefficient of Bi(III) in 0.01 mol.L^(-1) Bi(NO_3)_3-0.l mol.L^(-1) LiClO_4-DMSO system at 303 Kwere 1.75 X 10^(-6) cm^2.s^1 and 0.147 respectively.
基金supported by the Scientific Research Starting Foundation of China University of Petroleum-Beijing at Karamay(No.RCYJ2016B-01-008)the Major National Oil&Gas Specific Project of China(No.2016ZX05050008)
文摘Pore structure reflected from capillary pressure curves plays an important role in low-permeability formation evaluation. It is a common way to construct capillary pressure curves by Nuclear Magnetic Resonance(NMR) log. However, the method's efficiency will be severely affected if there is no NMR log data or it cannot reflect pore structure well. Therefore, on the basis of J function and diagenetic facies classification, a new empirical model for constructing capillary pressure curves from conventional logs is proposed here as a solution to the problem. This model includes porosity and the relative value of natural gamma rays as independent variables and the saturation of mercury injection as a dependent variable. According to the 51 core experimental data sets of three diagenetic facies from the bottom of the Upper Triassic in the western Ordos Basin, China, the model's parameters in each diagenetic facies are calibrated. Both self-checking and extrapolation tests show a positive effect, which demonstrates the high reliability of the proposed capillary pressure curve construction model. Based on the constructed capillary pressure curves, NMR T_2 spectra under fully brine-saturated conditions are mapped by a piecewise power function. A field study is then presented. Agreement can be seen between the mapped NMR T_2 spectra and the MRIL-Plog data in the location of the major peak, right boundary, distribution characteristics and T_2 logarithmic mean value. In addition, the capillary pressure curve construction model proposed in this paper is not affected by special log data or formation condition. It is of great importance in evaluating pore structure, predicting oil production and identifying oil layers through NMR log data in low-permeability sandstones.
文摘CoS2 spheres were synthesized according to the previous study reported by Lifang Jiao and her collabora tots. The details are listed as follow ing: 1.65 mmol of COC12 6H20 was dissolved in absolute ethanol and then was transferred into a 40 mL Teflon lined stainless steel autoclave, then 4.1 mmol of sulfur powder was added into above solution. The Teflon lined stainless steel auto was subsequently stirred for 30 min.
文摘Abstract The polypyrrole(PPy)@NiCo hybrid nanotube arrays have been successfully fabricated as a high performance electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The strong electronic interactions between PPy and NiCo alloy are confirmed by X-ray photoelectron spectroscopy and Raman spectra. Because these interations can remarkably reduce the apparent activation energy (Ea) for HER and enhance the turnover frequency of catalysts, the electrocatalytic performance of PPy@NiCo hybrid nanotube arrays are significantly improved. The electrochemical tests show that the PPy@NiCo hybrid catalysts exhibit a low overpotential of-186 mV at 10.0 mA·cm^-2 and a small tafel slope of 88.6 mV·deg^-1 for HER in the alkaline solution. The PPy@NiCo hybrid nanotubes also exhibit high catalytic activity and high stability for HER.
基金supported by the National Basic Research Program of China(Nos.2015CB932304,2016YFA0202603)the Natural Science Foundation of China (No.91645104)+1 种基金the Natural Science Foundation of Guangdong Province(Nos.S2013020012833,2016A010104004)the Fundamental Research Fund for the Central Universities(No.16lgjc67)
文摘Though water electrolysis is effective in generating high-quality hydrogen gas,it requires effective electrocatalysts for hydrogen evolution reaction(HER).CoS_2 have been considered as a promising HER electrocatalyst because of its high ctalytic activity.However,the key limitation for CoS_2 nanomaterial as HER electrocatalyst is its poor stability,which may be due to the structural breakdown of CoS_2 nanostructure or the evolution of S during H_2 evolution in acid media.Coating porous carbon thin layer for protection from structural breakdown and evolution of S is a good way to improve catalytic stability.In addition,coating carbon layer can change electronic structure of CoS_2 for the moderated hydrogen adsorption energy,leading to enhanced catalytic activity.Here,CoS_2 yolk-shell spheres coated with carbon thin layers exhibit superior catalytic performance for HER with low overpotential,small Tafel slope,and excellent stability.
基金This research was supported financially by the National Natural Science Foundation of China (NSFC) (Nos. 51672315, U1301242, 21271190, and 21403106), the government of Guangzhou city for an international joint-project (No. 201704030020), the Government of Guangdong Province for NSF (No. S2012020011113) and the provincial Ministry of Cooperative funded special funds (Nos. 2013A090100010, 2016B090932005, and 2015B090927002), the Fundamental Research Funds for the Central Universities (No. 161gpy18). The authors acknowledge Prof. Hong Jin Fan from Nanyang Technological University for helpful discussions.
文摘Nanostructured TiO2 has applications in solar cells, photocatalysts, and fast- charging, safe lithium ion batteries (LIBs). To meet the demand of high-capacity and high-rate LIBs with TiO2-based anodes, it is important to fine-tune the nanoarchitecture using a well-controlled synthesis approach. Herein, we report a new approach that involves epitaxial growth combined with topotactic conversion to synthesize a unique type of three-dimensional (3D) TiO2 nano- architecture that is assembled by well-oriented ultrathin nanobelts. The whole nanoarchitecture displays a 3D Chinese knot-like morphology; the core consists of robust perpendicular interwoven nanobelts and the shell is made of extended nanobelts. The nanobelts oriented in three perpendicular [001]A directions facilitate Li+ penetration and diffusion. Abundant anatase/TiO2-B interfaces provide a large amount of interfacial pseudocapacitance. A high and stable capacity of 130 mA.h.g-1 was obtained after 3,000 cycles at 10 A·g-1 (50 C), and the high-rate property of our material was greater than that of many recently reported high-rate TiO2 anodes. Our result provides, not only a novel synthesis strategy, but also a new type of 3D anatase TiO2 anode that may be useful in developing long-lasting and fast-charging batteries.