This paper first estimated the infectious capacity of COVID-19 based on the time series evolution data of confirmed cases in multiple countries. Then, a method to infer the cross-regional spread speed of COVID-19 was ...This paper first estimated the infectious capacity of COVID-19 based on the time series evolution data of confirmed cases in multiple countries. Then, a method to infer the cross-regional spread speed of COVID-19 was introduced in this paper, which took the gross domestic product(GDP) of each region as one of the factors that affect the spread speed of COVID-19 and studied the relationship between the GDP and the infection density of each region(China's Mainland, the United States, and EU countries). In addition, the geographic distance between regions was also considered in this method and the effect of geographic distance on the spread speed of COVID-19 was studied. Studies have shown that the probability of mutual infection of these two regions decreases with increasing geographic distance. Therefore, this paper proposed an epidemic disease spread index based on GDP and geographic distance to quantify the spread speed of COVID-19 in a region. The analysis results showed a strong correlation between the epidemic disease spread index in a region and the number of confirmed cases. This finding provides reasonable suggestions for the control of epidemics. Strengthening the control measures in regions with higher epidemic disease spread index can effectively control the spread of epidemics.展开更多
This paper investigates information spreading from the perspective of topological phase transition.Firstly,a new hybrid network is constructed based on the small-world networks and scale-free networks.Secondly,the att...This paper investigates information spreading from the perspective of topological phase transition.Firstly,a new hybrid network is constructed based on the small-world networks and scale-free networks.Secondly,the attention mechanism of online users in information spreading is studied from four aspects:social distance,individual influence,content richness,and individual activity,and a dynamic evolution model of connecting with spreading is designed.Eventually,numerical simulations are conducted in three types of networks to verify the validity of the proposed dynamic evolution model.The simulation results show that topological structure and node influence in different networks have undergone phase transition,which is consistent with the phenomenon that followers and individual influence in real social networks experience phase transition within a short period.The infection density of networks with the dynamic evolution rule changes faster and reaches higher values than that of networks without the dynamic evolution rule.Furthermore,the simulation results are compared with the real data,which shows that the infection density curve of the hybrid networks is closer to that of the real data than that of the small-world networks and scale-free networks,verifying the validity of the model proposed in this paper.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62266030 and 61863025)International S & T Cooperation Projects of Gansu province (Grant No.144WCGA166)Longyuan Young Innovation Talents and the Doctoral Foundation of LUT。
文摘This paper first estimated the infectious capacity of COVID-19 based on the time series evolution data of confirmed cases in multiple countries. Then, a method to infer the cross-regional spread speed of COVID-19 was introduced in this paper, which took the gross domestic product(GDP) of each region as one of the factors that affect the spread speed of COVID-19 and studied the relationship between the GDP and the infection density of each region(China's Mainland, the United States, and EU countries). In addition, the geographic distance between regions was also considered in this method and the effect of geographic distance on the spread speed of COVID-19 was studied. Studies have shown that the probability of mutual infection of these two regions decreases with increasing geographic distance. Therefore, this paper proposed an epidemic disease spread index based on GDP and geographic distance to quantify the spread speed of COVID-19 in a region. The analysis results showed a strong correlation between the epidemic disease spread index in a region and the number of confirmed cases. This finding provides reasonable suggestions for the control of epidemics. Strengthening the control measures in regions with higher epidemic disease spread index can effectively control the spread of epidemics.
基金the National Natural Science Foundation of China(Grant Nos.61863025 and 62266030)Program for International S&T Cooperation Projects of Gansu Province of China(Grant No.144WCGA166)Program for Longyuan Young Innovation Talents and the Doctoral Foundation of LUT.
文摘This paper investigates information spreading from the perspective of topological phase transition.Firstly,a new hybrid network is constructed based on the small-world networks and scale-free networks.Secondly,the attention mechanism of online users in information spreading is studied from four aspects:social distance,individual influence,content richness,and individual activity,and a dynamic evolution model of connecting with spreading is designed.Eventually,numerical simulations are conducted in three types of networks to verify the validity of the proposed dynamic evolution model.The simulation results show that topological structure and node influence in different networks have undergone phase transition,which is consistent with the phenomenon that followers and individual influence in real social networks experience phase transition within a short period.The infection density of networks with the dynamic evolution rule changes faster and reaches higher values than that of networks without the dynamic evolution rule.Furthermore,the simulation results are compared with the real data,which shows that the infection density curve of the hybrid networks is closer to that of the real data than that of the small-world networks and scale-free networks,verifying the validity of the model proposed in this paper.