In this work,we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes(in the range from-2 to-10 nm).Carbon supported nanoparticles with ...In this work,we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes(in the range from-2 to-10 nm).Carbon supported nanoparticles with narrow size distributions have been synthesized by applying an alternating voltage to macroscopic bulk platinum structures,such as disks or wires.Without using any surfactants,the size and shape of the particles can be changed by adjusting simple parameters such as the applied potential,frequency and electrolyte composition.For instance,application of a sinusoidal AC voltage with lower frequencies results in cubic nanoparticles;whereas higher frequencies lead to predominantly spherical nanoparticles.On the other hand,the amplitude of the,sinusoidal signal was found to affect the particle size;the lower the amplitude of the applied AC signal,the smaller the resulting particle size.Pt/C catalysts prepared by this approach showed 0.76 A/mg mass activity towards the oxygen reduction reaction which is-2 times higher than the state-of-the-art commercial Pt/C catalyst(0.42 A/mg)from Tanaka.In addition to this,we discussed the mechanistic insights about the nanoparticle formation pathways.展开更多
Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation ha...Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation has been suggested to be a fundamental mechanism underlying the positive biodiversity-productivity relationships.Empirical evidence,however,is rare about the impact of local neighbourhood diversity on tree characteristics analysed at a very high level of detail.To address this issue we analysed these effects on the individual-tree crown architecture and tree productivity in a mature mixed forest in northern Germany.Methods:Our analysis considers multiple target tree species across a local neighbourhood species richness gradient ranging from 1 to 4.We applied terrestrial laser scanning to quantify a large number of individual mature trees(N=920)at very high accuracy.We evaluated two different neighbour inclusion approaches by analysing both a fixed radius selection procedure and a selection based on overlapping crowns.Results and conclusions:We show that local neighbourhood species diversity significantly increases crown dimension and wood volume of target trees.Moreover,we found a size-dependency of diversity effects on tree productivity(basal area and wood volume increment)with positive effects for large-sized trees(diameter at breast height(DBH)>40 cm)and negative effects for small-sized(DBH<40 cm)trees.In our analysis,the neighbour inclusion approach has a significant impact on the outcome.For scientific studies and the validation of growth models we recommend a neighbour selection by overlapping crowns,because this seems to be the relevant scale at which local neighbourhood interactions occur.Because local neighbourhood diversity promotes individual-tree productivity in mature European mixed-species forests,we conclude that a small-scale species mixture should be considered in management plans.展开更多
Managing the charging process of a large number of electric vehicles to decrease the pressure on the local electricity grid is of high interest to the utilities. Using efficient mathematical optimization techniques, t...Managing the charging process of a large number of electric vehicles to decrease the pressure on the local electricity grid is of high interest to the utilities. Using efficient mathematical optimization techniques, the charging behavior of electric vehicles shall be optimally controlled taking into account network, vehicle, and customer requirements. We developed an efficient algorithm for calculating load shift potentials defined as the range of all charging curves meeting the customer’s requirements and respecting all individual charging and discharging constraints over time. In addition, we formulated a mixed integer linear program (MIP) applying semi-continuous variables to find cost-optimal load curves for every vehicle participating in a load shift. This problem can be solved by e.g. branch-and-bound algorithms. Results of two scenarios of Germany in 2015 and 2030 based on mobility studies show that the load shifting potential of EV is significant and contribute to a necessary relaxation of the future grid. The maximum charging and discharging power and the average battery capacity are crucial to the overall load shift potential.展开更多
Our main aim is to prove a more general version of the quantum Zeno effect. Then we discuss some examples of the quantum Zeno effect. Furthermore, we discuss a possibility that based on the quantum Zeno effect and cer...Our main aim is to prove a more general version of the quantum Zeno effect. Then we discuss some examples of the quantum Zeno effect. Furthermore, we discuss a possibility that based on the quantum Zeno effect and certain experiments one could check whether, from the statistical point of view, a concrete system behaves like a quantum system. The more general version of quantum Zeno effect can be helpful to prove that the brain acts like in a quantum system. The proof of our main result is based on certain formulas describing probability distributions of time series related to quantum measurements.展开更多
Lithium-sulphur(Li-S)batteries are currently considered as next-generation battery technology.Sulphur is an attractive positive electrode for lithium metal batteries,mainly due to its high capacity(1675 m Ah g^(-1))an...Lithium-sulphur(Li-S)batteries are currently considered as next-generation battery technology.Sulphur is an attractive positive electrode for lithium metal batteries,mainly due to its high capacity(1675 m Ah g^(-1))and high specific energy(2600 Wh kg^(-1)).The electrochemical reaction of lithium with sulphur in non-aqueous electrolytes results in the formation of electrolyte soluble intermediate lithium-polysulphides.The dissolved polysulphides shuttle to the anode and get reduced at the anode resulting in Li metal corrosion.The solubility of polysulphide gradually reduces the amount of sulphur in the cathode,thereby limiting the cycle life of Li-S batteries.Several strategies have been proposed to improve the cycling stability of Li-S batteries.A unique approach to eliminate the polysulphide shuttle is to use ultramicroporous carbon(UMC)as a host for sulphur.The pore size of UMC which is below 7A,is the bottleneck for carbonate solvents to access sulphur/polysulphides confined in the pores,thereby preventing the polysulphide dissolution.This perspective article will emphasise the role of UMC host in directing the lithiation mechanism of sulphur and in inhibiting polysulphide dissolution,including the resulting parasitic reaction on the lithium anode.Further,the challenges that need to be addressed by UMC-S based Li-S batteries,and the strategies to realise high power density,high Coulombic efficiency,and resilient Li-S batteries will be discussed.展开更多
BACKGROUND Cytoreductive surgery(CRS)in combination with hyperthermic intraperitoneal chemotherapy(HIPEC)improves patient survival in colorectal cancer(CRC)with peritoneal carcinomatosis(PC).Commonly used cytotoxic ag...BACKGROUND Cytoreductive surgery(CRS)in combination with hyperthermic intraperitoneal chemotherapy(HIPEC)improves patient survival in colorectal cancer(CRC)with peritoneal carcinomatosis(PC).Commonly used cytotoxic agents include mitomycin C(MMC)and oxaliplatin.Studies have reported varying results,and the evidence for the choice of the HIPEC agent and uniform procedure protocols is limited.AIM To evaluate therapeutic benefits and complications of CRS+MMC vs oxaliplatin HIPEC in patients with peritoneal metastasized CRC as well as prognostic factors.METHODS One hundred and two consecutive patients who had undergone CRS and HIPEC for CRC PC between 2007 and 2019 at the Medical Center of the University Freiburg regarding interdisciplinary cancer conference decision were retrospectively analysed.Oxaliplatin and MMC were used in 68 and 34 patients,respectively.Each patient’s demographics and tumour characteristics,operative details,postoperative complications and survival were noted.Complications were stratified and graded using Clavien/Dindo analysis.Prognostic outcome factors were identified using univariate and multivariate analysis of survival.RESULTS The two groups did not differ significantly regarding baseline characteristics.We found no difference in median overall survival between MMC and oxaliplatin HIPEC.Regarding postoperative complications,patients treated with oxaliplatin HIPEC suffered increased complications(66.2%vs 35.3%;P=0.003),particularly intestinal atony,intraabdominal infections and urinary tract infection,and had a prolonged intensive care unit stay compared to the MMC group(7.2 d vs 4.4 d;P=0.035).Regarding univariate analysis of survival,we found primary tumour factors,nodal positivity and resection margins to be of prognostic value as well as peritoneal cancer index(PCI)-score and the completeness of cytoreduction regarding peritoneal carcinomatosis.Multivariate analysis of survival confirmed primary distant metastasis and primary tumour resection status to have a significant impact on su展开更多
There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capac...There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capacities.So that the community has started to explore alternative battery chemistries.As a promising multivalent battery type,rechargeable magnesium batteries(RMBs)have attracted increasing attention because of high safety,high volumetric energy density,and low cost thanks to abundant resource of Mg.However,the development of high-performance anodes is still hampered by formation of passivating layers on the Mg surface.Additionally,dendrites can also grow under certain conditions with pure Mg anodes,which requires further studies for reliable operation window and substitutes.Therefore,this review specifically aims to provide an overview on the often overlooked yet very important anode materials of RMBs,with the hope to inspire more attention and research efforts for the achievement of over-all better performance of future RMBs.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.展开更多
P2-type layered oxides with the general Na-deficient composition Na_(x)TMO_(2)(x<1,TM:transition metal)are a promising class of cathode materials for sodium-ion batteries.The open Na+transport pathways present in t...P2-type layered oxides with the general Na-deficient composition Na_(x)TMO_(2)(x<1,TM:transition metal)are a promising class of cathode materials for sodium-ion batteries.The open Na+transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates.However,a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation.In this work,we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation.Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry,Na_(0.67)(Mn_(0.55)Ni_(0.21)Co_(0.24))O_(2),Na_(0.67)(Mn_(0.45)Ni_(0.18)Co_(0.24)Ti_(0.1)Mg_(0.03))O_(2) and Na_(0.67)(Mn_(0.45)Ni_(0.18)Co_(0.18)Ti_(0.1)Mg_(0.03)Al_(0.04)Fe_(0.02))O_(2) with low,medium and high configurational entropy,respectively.The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V.Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly.Overall,the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications.展开更多
BACKGROUND Sclerosing angiomatoid nodular transformation(SANT)is a rare benign disease of the spleen with unknown origin.Clinical symptoms are inhomogeneous,and suspicious splenic lesion often found incidentally,leadi...BACKGROUND Sclerosing angiomatoid nodular transformation(SANT)is a rare benign disease of the spleen with unknown origin.Clinical symptoms are inhomogeneous,and suspicious splenic lesion often found incidentally,leading to splenectomy,as malignancy cannot securely be ruled out.Diagnosis is made histologically after resection.CASE SUMMARY Two cases of German,white,non-smoking,and non-drinking patients of normal weight are presented.The first one is a 26-year-old man without medical history who was exhibiting an undesired weight loss of 10 kg and recurring vomiting for about 18 mo.The second one is a 65-year-old woman with hypertension who had previously undergone gynecological surgery,suffering from a lasting feeling of abdominal fullness.Both showed radiologically an inhomogeneous splenic lesion leading to splenectomy approximately 6 and 9 wk after surgical presentation.Both diagnoses of SANT were made histologically.Follow-up went well,and both were treated according to the recommendation for asplenic patients.CONCLUSION SANT is a rare cause of splenectomy and an incidental histological finding.Further research should focus on clinical and radiological diagnosis of SANT as well as on treatment of patients with asymptomatic and small findings.展开更多
Background: The poor prognosis of patients with high-grade glioma multiform (GBM) has led investigators to the search of new therapeutic strategies. Current treatment includes surgery when possible, radiotherapy and c...Background: The poor prognosis of patients with high-grade glioma multiform (GBM) has led investigators to the search of new therapeutic strategies. Current treatment includes surgery when possible, radiotherapy and chemotherapy. Molecular-targeted therapies are in the process of clinical testing, and promising agents include monoclonal antibodies. Our study examined the antitumor activity of three different single therapies in nude mice bearing both subcutaneous and orthotopic brain xenografts of the U87MG human GBM cell line. Methods: Cell culture, Histology, Immunohistochemistry, Animal experiments, Statistical analysis. Results: Different groups of treatment included nimotuzumab, a humanized monoclonal antibody that inhibits the EGFR tyrosine kinase activity, or total body irradiation, or the chemotherapeutic agent temozolomide (TMZ). For the control group animals received saline solution instead of the antibody. For the subcutaneous model, only nimotuzumab or TMZ produced a significant delay in tumor growth. In the intracranial model, unlike TMZ, the systemic administration of the antibody did not reduce the tumor growth, despite both therapies inhibited the formation of microsatellites in the brain of mice. The antitumor activity of nimotuzumab was accompanied by a decrease in the microvessel density and the proliferative activity of tumor cells. TMZ only inhibited the tumor cell proliferation but not the formation of new tumor-associated microvessels in xenografts. For radiation therapy, neither antiproliferative nor antiangiogenic activity was found, in accordance with the lack of antitumor activity. Only nimotuzumab reduced the frequency of chemo and radioresistant CD133+ population. Conclusion: Our results illustrate the potential efficacy of nimotuzumab as a single agent against an EGFR-amplified human GBM, a tumor resistant to the therapy with all well-known forms of treatment.展开更多
To advance preclinical testing of novel targeted drugs in colorectal cancer (CRC) we established a panel of 133 mouse xenograft models from fresh tumor specimens of 239 patients with CRC of all four UICC stages. A sub...To advance preclinical testing of novel targeted drugs in colorectal cancer (CRC) we established a panel of 133 mouse xenograft models from fresh tumor specimens of 239 patients with CRC of all four UICC stages. A subgroup of 67 xenograft models was treated with cetuximab, bevacizumab and oxaliplatin as single agents. Mutation status of KRAS (G12, G13, A146T), BRAF (V600E) and PIK3CA (E542K, E545K, H1047R) was assessed in all xenografts by allelespecific real-time PCR. KRAS codon 61 was assessed by conventional sequencing. AREG and EREG expression levels were analyzed by real-time PCR expression assays. In the treatment experiment we observed response rates of 27% (18/67) for cetuximab, 3% (2/67) for bevacizumab, and 6% (4/67) for oxaliplatin. Classification based on KRAS, BRAF and PIK3CA mutation status identified 15 of the responders (sensitivity 83%, confidence interval at p = 0.05 (CI): 59% - 96%), and 38 nonresponders (specificity 78%, CI: 63% - 88%). If any mutation except in KRAS codon 13 were considered, the classifier reached sensitivity of 94% and specificity of 69%. We improved specificity of the classifiers to 90% and 86% respectively by adding AREG and EREG RNA expression thresholds retrospectively. In patient-derived xenograft models, we found a predictive classifier for response to cetuximab that is more accurate than established biomarkers. We confirmed its potential performance in primary human tumors. For patients, the classifier’s sensitivity promises increased response rates and its specificity limits unnecessary toxicity. Given the scope of our xenograft models across all UICC stages, this applies not only to mCRC but also to the adjuvant setting of earlier stages. The xenograft collection allows to mimic randomized phase II trials and to test novel drugs effectively as single agents or in combinations. It also enables the development of highly accurate companion diagnostics as demonstrated by us for cetuximab.展开更多
基金support from Deutsche Forschungsgemeinschaft under Germany s excellence strategy-EXC 2089/1-390776260Germany’s excellence cluster“e-conversion”,DFG project BA 5795/4-1funding from the TUM IGSSE project 11.01 are gratefully acknowledged.We also acknowledge DESY(Hamburg,Germany),a member of the Helmholtz Association HGF,for the provision of experimental facilities.Parts of this research were carried out at PETRA III using beamline P02.1.We acknowledge CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) and CEITEC Nano Research Infrastructure for TEM measurements.
文摘In this work,we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes(in the range from-2 to-10 nm).Carbon supported nanoparticles with narrow size distributions have been synthesized by applying an alternating voltage to macroscopic bulk platinum structures,such as disks or wires.Without using any surfactants,the size and shape of the particles can be changed by adjusting simple parameters such as the applied potential,frequency and electrolyte composition.For instance,application of a sinusoidal AC voltage with lower frequencies results in cubic nanoparticles;whereas higher frequencies lead to predominantly spherical nanoparticles.On the other hand,the amplitude of the,sinusoidal signal was found to affect the particle size;the lower the amplitude of the applied AC signal,the smaller the resulting particle size.Pt/C catalysts prepared by this approach showed 0.76 A/mg mass activity towards the oxygen reduction reaction which is-2 times higher than the state-of-the-art commercial Pt/C catalyst(0.42 A/mg)from Tanaka.In addition to this,we discussed the mechanistic insights about the nanoparticle formation pathways.
基金LG was funded by the German Research Foundation(DFG 320926971)through the project“Analysis of diversity effects on above-groundproductivity in forests:advancing the mechanistic understanding of spatiotemporal dynamics in canopy space filling using mobile laser scanning”。
文摘Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation has been suggested to be a fundamental mechanism underlying the positive biodiversity-productivity relationships.Empirical evidence,however,is rare about the impact of local neighbourhood diversity on tree characteristics analysed at a very high level of detail.To address this issue we analysed these effects on the individual-tree crown architecture and tree productivity in a mature mixed forest in northern Germany.Methods:Our analysis considers multiple target tree species across a local neighbourhood species richness gradient ranging from 1 to 4.We applied terrestrial laser scanning to quantify a large number of individual mature trees(N=920)at very high accuracy.We evaluated two different neighbour inclusion approaches by analysing both a fixed radius selection procedure and a selection based on overlapping crowns.Results and conclusions:We show that local neighbourhood species diversity significantly increases crown dimension and wood volume of target trees.Moreover,we found a size-dependency of diversity effects on tree productivity(basal area and wood volume increment)with positive effects for large-sized trees(diameter at breast height(DBH)>40 cm)and negative effects for small-sized(DBH<40 cm)trees.In our analysis,the neighbour inclusion approach has a significant impact on the outcome.For scientific studies and the validation of growth models we recommend a neighbour selection by overlapping crowns,because this seems to be the relevant scale at which local neighbourhood interactions occur.Because local neighbourhood diversity promotes individual-tree productivity in mature European mixed-species forests,we conclude that a small-scale species mixture should be considered in management plans.
基金supported by the Energy Solution Center(EnSoC),an association of major industrial corporations and research institutions in Germanysupport by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology
文摘Managing the charging process of a large number of electric vehicles to decrease the pressure on the local electricity grid is of high interest to the utilities. Using efficient mathematical optimization techniques, the charging behavior of electric vehicles shall be optimally controlled taking into account network, vehicle, and customer requirements. We developed an efficient algorithm for calculating load shift potentials defined as the range of all charging curves meeting the customer’s requirements and respecting all individual charging and discharging constraints over time. In addition, we formulated a mixed integer linear program (MIP) applying semi-continuous variables to find cost-optimal load curves for every vehicle participating in a load shift. This problem can be solved by e.g. branch-and-bound algorithms. Results of two scenarios of Germany in 2015 and 2030 based on mobility studies show that the load shifting potential of EV is significant and contribute to a necessary relaxation of the future grid. The maximum charging and discharging power and the average battery capacity are crucial to the overall load shift potential.
文摘Our main aim is to prove a more general version of the quantum Zeno effect. Then we discuss some examples of the quantum Zeno effect. Furthermore, we discuss a possibility that based on the quantum Zeno effect and certain experiments one could check whether, from the statistical point of view, a concrete system behaves like a quantum system. The more general version of quantum Zeno effect can be helpful to prove that the brain acts like in a quantum system. The proof of our main result is based on certain formulas describing probability distributions of time series related to quantum measurements.
基金partly funded by the German Research Foundation(DFG)under Project ID 390874152(POLiS Cluster of Excellence,EXC2154)。
文摘Lithium-sulphur(Li-S)batteries are currently considered as next-generation battery technology.Sulphur is an attractive positive electrode for lithium metal batteries,mainly due to its high capacity(1675 m Ah g^(-1))and high specific energy(2600 Wh kg^(-1)).The electrochemical reaction of lithium with sulphur in non-aqueous electrolytes results in the formation of electrolyte soluble intermediate lithium-polysulphides.The dissolved polysulphides shuttle to the anode and get reduced at the anode resulting in Li metal corrosion.The solubility of polysulphide gradually reduces the amount of sulphur in the cathode,thereby limiting the cycle life of Li-S batteries.Several strategies have been proposed to improve the cycling stability of Li-S batteries.A unique approach to eliminate the polysulphide shuttle is to use ultramicroporous carbon(UMC)as a host for sulphur.The pore size of UMC which is below 7A,is the bottleneck for carbonate solvents to access sulphur/polysulphides confined in the pores,thereby preventing the polysulphide dissolution.This perspective article will emphasise the role of UMC host in directing the lithiation mechanism of sulphur and in inhibiting polysulphide dissolution,including the resulting parasitic reaction on the lithium anode.Further,the challenges that need to be addressed by UMC-S based Li-S batteries,and the strategies to realise high power density,high Coulombic efficiency,and resilient Li-S batteries will be discussed.
文摘BACKGROUND Cytoreductive surgery(CRS)in combination with hyperthermic intraperitoneal chemotherapy(HIPEC)improves patient survival in colorectal cancer(CRC)with peritoneal carcinomatosis(PC).Commonly used cytotoxic agents include mitomycin C(MMC)and oxaliplatin.Studies have reported varying results,and the evidence for the choice of the HIPEC agent and uniform procedure protocols is limited.AIM To evaluate therapeutic benefits and complications of CRS+MMC vs oxaliplatin HIPEC in patients with peritoneal metastasized CRC as well as prognostic factors.METHODS One hundred and two consecutive patients who had undergone CRS and HIPEC for CRC PC between 2007 and 2019 at the Medical Center of the University Freiburg regarding interdisciplinary cancer conference decision were retrospectively analysed.Oxaliplatin and MMC were used in 68 and 34 patients,respectively.Each patient’s demographics and tumour characteristics,operative details,postoperative complications and survival were noted.Complications were stratified and graded using Clavien/Dindo analysis.Prognostic outcome factors were identified using univariate and multivariate analysis of survival.RESULTS The two groups did not differ significantly regarding baseline characteristics.We found no difference in median overall survival between MMC and oxaliplatin HIPEC.Regarding postoperative complications,patients treated with oxaliplatin HIPEC suffered increased complications(66.2%vs 35.3%;P=0.003),particularly intestinal atony,intraabdominal infections and urinary tract infection,and had a prolonged intensive care unit stay compared to the MMC group(7.2 d vs 4.4 d;P=0.035).Regarding univariate analysis of survival,we found primary tumour factors,nodal positivity and resection margins to be of prognostic value as well as peritoneal cancer index(PCI)-score and the completeness of cytoreduction regarding peritoneal carcinomatosis.Multivariate analysis of survival confirmed primary distant metastasis and primary tumour resection status to have a significant impact on su
基金the German Research Foundation DFG project(LI 2839/1-1)National Natural Science Foundation of China(51971044)MF acknowledges funding from EU research and innovation framework programme via ttE-MAGIC,project(ID:824066)。
文摘There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capacities.So that the community has started to explore alternative battery chemistries.As a promising multivalent battery type,rechargeable magnesium batteries(RMBs)have attracted increasing attention because of high safety,high volumetric energy density,and low cost thanks to abundant resource of Mg.However,the development of high-performance anodes is still hampered by formation of passivating layers on the Mg surface.Additionally,dendrites can also grow under certain conditions with pure Mg anodes,which requires further studies for reliable operation window and substitutes.Therefore,this review specifically aims to provide an overview on the often overlooked yet very important anode materials of RMBs,with the hope to inspire more attention and research efforts for the achievement of over-all better performance of future RMBs.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.
基金financial support from the China Scholarship Council(CSC)financial support by Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy,EXC 2154,project number 390874152+8 种基金financial support from the Federal Ministry of Education and Research(Bundesministerium für Bildung und Forschung,BMBF)under the project‘KaSiLi’(03XP0254D)in the competence cluster‘Excell-BattMat’financial support from the Helmholtz Association(DigiBat project)support by the German Research Foundation(to H H,Grant No.HA 1344/43-1)is gratefully acknowledgedsupport from EnABLES and EPISTORE,projects funded by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.730957 and 101017709,respectivelyfunding from the Kera-Solar project(Carl Zeiss Foundation)support at beamline P65 of the PETRA Ⅲ synchrotron(Deutsches Elektronen-Synchrotron DESY,Hamburg,Germany)is gratefully acknowledgedEduard Arzt(INM)for his continuing supportAndrea Jung(INM)for her support on ICP-OES measurementsthe support from the Karlsruhe Nano Micro Facility(KNMF,www.knmf.kit.edu),a Helmholtz research infrastructure at Karlsruhe Institute of Technology(KIT,www.kit.du).
文摘P2-type layered oxides with the general Na-deficient composition Na_(x)TMO_(2)(x<1,TM:transition metal)are a promising class of cathode materials for sodium-ion batteries.The open Na+transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates.However,a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation.In this work,we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation.Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry,Na_(0.67)(Mn_(0.55)Ni_(0.21)Co_(0.24))O_(2),Na_(0.67)(Mn_(0.45)Ni_(0.18)Co_(0.24)Ti_(0.1)Mg_(0.03))O_(2) and Na_(0.67)(Mn_(0.45)Ni_(0.18)Co_(0.18)Ti_(0.1)Mg_(0.03)Al_(0.04)Fe_(0.02))O_(2) with low,medium and high configurational entropy,respectively.The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V.Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly.Overall,the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications.
文摘BACKGROUND Sclerosing angiomatoid nodular transformation(SANT)is a rare benign disease of the spleen with unknown origin.Clinical symptoms are inhomogeneous,and suspicious splenic lesion often found incidentally,leading to splenectomy,as malignancy cannot securely be ruled out.Diagnosis is made histologically after resection.CASE SUMMARY Two cases of German,white,non-smoking,and non-drinking patients of normal weight are presented.The first one is a 26-year-old man without medical history who was exhibiting an undesired weight loss of 10 kg and recurring vomiting for about 18 mo.The second one is a 65-year-old woman with hypertension who had previously undergone gynecological surgery,suffering from a lasting feeling of abdominal fullness.Both showed radiologically an inhomogeneous splenic lesion leading to splenectomy approximately 6 and 9 wk after surgical presentation.Both diagnoses of SANT were made histologically.Follow-up went well,and both were treated according to the recommendation for asplenic patients.CONCLUSION SANT is a rare cause of splenectomy and an incidental histological finding.Further research should focus on clinical and radiological diagnosis of SANT as well as on treatment of patients with asymptomatic and small findings.
文摘Background: The poor prognosis of patients with high-grade glioma multiform (GBM) has led investigators to the search of new therapeutic strategies. Current treatment includes surgery when possible, radiotherapy and chemotherapy. Molecular-targeted therapies are in the process of clinical testing, and promising agents include monoclonal antibodies. Our study examined the antitumor activity of three different single therapies in nude mice bearing both subcutaneous and orthotopic brain xenografts of the U87MG human GBM cell line. Methods: Cell culture, Histology, Immunohistochemistry, Animal experiments, Statistical analysis. Results: Different groups of treatment included nimotuzumab, a humanized monoclonal antibody that inhibits the EGFR tyrosine kinase activity, or total body irradiation, or the chemotherapeutic agent temozolomide (TMZ). For the control group animals received saline solution instead of the antibody. For the subcutaneous model, only nimotuzumab or TMZ produced a significant delay in tumor growth. In the intracranial model, unlike TMZ, the systemic administration of the antibody did not reduce the tumor growth, despite both therapies inhibited the formation of microsatellites in the brain of mice. The antitumor activity of nimotuzumab was accompanied by a decrease in the microvessel density and the proliferative activity of tumor cells. TMZ only inhibited the tumor cell proliferation but not the formation of new tumor-associated microvessels in xenografts. For radiation therapy, neither antiproliferative nor antiangiogenic activity was found, in accordance with the lack of antitumor activity. Only nimotuzumab reduced the frequency of chemo and radioresistant CD133+ population. Conclusion: Our results illustrate the potential efficacy of nimotuzumab as a single agent against an EGFR-amplified human GBM, a tumor resistant to the therapy with all well-known forms of treatment.
文摘To advance preclinical testing of novel targeted drugs in colorectal cancer (CRC) we established a panel of 133 mouse xenograft models from fresh tumor specimens of 239 patients with CRC of all four UICC stages. A subgroup of 67 xenograft models was treated with cetuximab, bevacizumab and oxaliplatin as single agents. Mutation status of KRAS (G12, G13, A146T), BRAF (V600E) and PIK3CA (E542K, E545K, H1047R) was assessed in all xenografts by allelespecific real-time PCR. KRAS codon 61 was assessed by conventional sequencing. AREG and EREG expression levels were analyzed by real-time PCR expression assays. In the treatment experiment we observed response rates of 27% (18/67) for cetuximab, 3% (2/67) for bevacizumab, and 6% (4/67) for oxaliplatin. Classification based on KRAS, BRAF and PIK3CA mutation status identified 15 of the responders (sensitivity 83%, confidence interval at p = 0.05 (CI): 59% - 96%), and 38 nonresponders (specificity 78%, CI: 63% - 88%). If any mutation except in KRAS codon 13 were considered, the classifier reached sensitivity of 94% and specificity of 69%. We improved specificity of the classifiers to 90% and 86% respectively by adding AREG and EREG RNA expression thresholds retrospectively. In patient-derived xenograft models, we found a predictive classifier for response to cetuximab that is more accurate than established biomarkers. We confirmed its potential performance in primary human tumors. For patients, the classifier’s sensitivity promises increased response rates and its specificity limits unnecessary toxicity. Given the scope of our xenograft models across all UICC stages, this applies not only to mCRC but also to the adjuvant setting of earlier stages. The xenograft collection allows to mimic randomized phase II trials and to test novel drugs effectively as single agents or in combinations. It also enables the development of highly accurate companion diagnostics as demonstrated by us for cetuximab.