期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Strong Approximation by Cesàro Means with Critical Index in the Hardy Spaces H^P(S^(d-1))(0 被引量:1
1
作者 fengdai KunYangWANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第2期439-448,共10页
Let S^(d-1) = {x : |x| = 1} be a unit sphere of the d-dimensional Euclideanspace R^d and let H^p = H^p(S^(d-1)) (0 < p ≤ 1) denote the real Hardy space on S^(d-1). For 0 < p≤ 1 and f ∈ H^p(S^(d-1)), let E_j (... Let S^(d-1) = {x : |x| = 1} be a unit sphere of the d-dimensional Euclideanspace R^d and let H^p = H^p(S^(d-1)) (0 < p ≤ 1) denote the real Hardy space on S^(d-1). For 0 < p≤ 1 and f ∈ H^p(S^(d-1)), let E_j (f, H^p) (j =0,1,...) be the best approximation of f byspherical polynomials of degree less than or equal to j, in the space H^p(S^(d-1)). Given adistribution f on S^(d-1), its Cesaro mean of order δ > -1 is denoted by σ_k~δ(f). For 0 < p ≤1, it is known that δ(p) := (d-1)/p - d/2 is the critical index for the uniform summability ofσ_k~δ(f) in the metric H^p. 展开更多
关键词 H^p spaces spherical harmonics cesaro means K-functionals strongapproximation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部