为明确花生单粒精播适宜的氮肥水平和种植密度,本研究于2018年和2019年以‘花育22’为供试花生品种,设置3个氮肥水平(0 kg hm^-2,N0;60 kg hm^-2,N1;120 kg hm^-2,N2),3个种植密度(7.93万株hm^-2,D1;15.86万株hm^-2,D2;23.79万株hm^-2,D...为明确花生单粒精播适宜的氮肥水平和种植密度,本研究于2018年和2019年以‘花育22’为供试花生品种,设置3个氮肥水平(0 kg hm^-2,N0;60 kg hm^-2,N1;120 kg hm^-2,N2),3个种植密度(7.93万株hm^-2,D1;15.86万株hm^-2,D2;23.79万株hm^-2,D3),采用二因素裂区试验设计,研究氮肥、密度及其互作对单粒精播花生根系形态、植株性状及产量的影响。氮肥对花生根长、根表面积、根体积、根干重的影响不显著,而密度的影响显著。单株根长、根表面积、根体积及根系干重随密度的增加而降低,D1显著高于D2和D3,D2、D3处理间差异不显著;单位面积根长、根表面积、根体积及根系干重随密度的增加而增加,D1显著低于D2和D3,D2、D3处理间差异不显著。氮肥和密度互作对2019年收获期单位面积根长、根表面积的影响显著,与D1相比,N1处理下D3的增幅显著高于N0和N2处理。氮肥及氮肥与密度互作对植株性状的影响存在年度和时期间的差异,主茎叶片数、侧枝数和主茎第一节间粗随密度增加有降低趋势。氮肥对荚果产量的影响不显著,荚果产量随密度的增加呈增加的趋势。产量与根体积、根干重、主茎叶片数、主茎高及侧枝长呈显著正相关。综上所述,在本试验条件下,花生单粒精播适宜的氮肥(N)水平为60 kg hm-2,种植密度为18.8万株hm-2。展开更多
Objective To investigate the effect of honokiol(HON)and the role of high-mobility group protein B1(HMGB1)on the pathogenesis of severe acute pancreatitis(SAP).Methods Thirty mice were numbered according to weight,and ...Objective To investigate the effect of honokiol(HON)and the role of high-mobility group protein B1(HMGB1)on the pathogenesis of severe acute pancreatitis(SAP).Methods Thirty mice were numbered according to weight,and randomly divided into 5 groups using a random number table,including control,SAP,SAP and normal saline(SAP+NS),SAP and ethyl pyruvate(SAP+EP),or SAP+HON groups,6 mice in each group.Samples of pancreas,intestine,and blood were collected 12 h after SAP model induction for examination of pathologic changes,immune function alterations by enzyme linked immunosorbent assay(ELISA),and Western blot.In vitro experiments,macrophages were divided into 5 groups,the control,lipopolysaccharide(LPS),LPS+DMSO(DMSO),LPS+anti-HMGB1 monoclonal antibody(mAb),and LPS+HON groups.The tight connection level was determined by transmission electron microscopy and fluorescein isothiocyanate-labeled.The location and acetylation of HMGB1 were measured by Western blot.Finally,pyridone 6 and silencing signal transducer and activator of the transcription 1(siSTAT1)combined with honokiol were added to determine whether the Janus kinase(JAK)/STAT1 participated in the regulation of honokiol on HMGB1.The protein expression levels of HMGB1,JAK,and STAT1 were detected using Western blot.Results Mice with SAP had inflammatory injury in the pancreas,bleeding of intestinal tissues,and cells with disrupted histology.Mice in the SAP+HON group had significantly fewer pathological changes.Mice with SAP also had significant increases in the serum levels of amylase,lipase,HMGB1,tumor necrosis factor-α,interleukin-6,diamine oxidase,endotoxin-1,and procalcitonin.Mice in the SAP+HON group did not show these abnormalities(P<0.01).Studies of Caco-2 cells indicated that LPS increased the levels of occludin and claudin-1 as well as tight junction permeability,decreased the levels of junctional adhesion molecule C,and elevated intercellular permeability(P<0.01).HON treatment blocked these effects.Studies of macrophages indicated that LPS led to low nucl展开更多
文摘为明确花生单粒精播适宜的氮肥水平和种植密度,本研究于2018年和2019年以‘花育22’为供试花生品种,设置3个氮肥水平(0 kg hm^-2,N0;60 kg hm^-2,N1;120 kg hm^-2,N2),3个种植密度(7.93万株hm^-2,D1;15.86万株hm^-2,D2;23.79万株hm^-2,D3),采用二因素裂区试验设计,研究氮肥、密度及其互作对单粒精播花生根系形态、植株性状及产量的影响。氮肥对花生根长、根表面积、根体积、根干重的影响不显著,而密度的影响显著。单株根长、根表面积、根体积及根系干重随密度的增加而降低,D1显著高于D2和D3,D2、D3处理间差异不显著;单位面积根长、根表面积、根体积及根系干重随密度的增加而增加,D1显著低于D2和D3,D2、D3处理间差异不显著。氮肥和密度互作对2019年收获期单位面积根长、根表面积的影响显著,与D1相比,N1处理下D3的增幅显著高于N0和N2处理。氮肥及氮肥与密度互作对植株性状的影响存在年度和时期间的差异,主茎叶片数、侧枝数和主茎第一节间粗随密度增加有降低趋势。氮肥对荚果产量的影响不显著,荚果产量随密度的增加呈增加的趋势。产量与根体积、根干重、主茎叶片数、主茎高及侧枝长呈显著正相关。综上所述,在本试验条件下,花生单粒精播适宜的氮肥(N)水平为60 kg hm-2,种植密度为18.8万株hm-2。
基金Supported by National Natural Science Foundation of China(No.81803920 and 81673789)Key Medical Specialty Construction Project of Shanghai Municipal Health Commission(No.ZK2019B18)Shanghai Putuo District Health Commission Characteristic Disease Construction Project(No.2020TSZB03)。
文摘Objective To investigate the effect of honokiol(HON)and the role of high-mobility group protein B1(HMGB1)on the pathogenesis of severe acute pancreatitis(SAP).Methods Thirty mice were numbered according to weight,and randomly divided into 5 groups using a random number table,including control,SAP,SAP and normal saline(SAP+NS),SAP and ethyl pyruvate(SAP+EP),or SAP+HON groups,6 mice in each group.Samples of pancreas,intestine,and blood were collected 12 h after SAP model induction for examination of pathologic changes,immune function alterations by enzyme linked immunosorbent assay(ELISA),and Western blot.In vitro experiments,macrophages were divided into 5 groups,the control,lipopolysaccharide(LPS),LPS+DMSO(DMSO),LPS+anti-HMGB1 monoclonal antibody(mAb),and LPS+HON groups.The tight connection level was determined by transmission electron microscopy and fluorescein isothiocyanate-labeled.The location and acetylation of HMGB1 were measured by Western blot.Finally,pyridone 6 and silencing signal transducer and activator of the transcription 1(siSTAT1)combined with honokiol were added to determine whether the Janus kinase(JAK)/STAT1 participated in the regulation of honokiol on HMGB1.The protein expression levels of HMGB1,JAK,and STAT1 were detected using Western blot.Results Mice with SAP had inflammatory injury in the pancreas,bleeding of intestinal tissues,and cells with disrupted histology.Mice in the SAP+HON group had significantly fewer pathological changes.Mice with SAP also had significant increases in the serum levels of amylase,lipase,HMGB1,tumor necrosis factor-α,interleukin-6,diamine oxidase,endotoxin-1,and procalcitonin.Mice in the SAP+HON group did not show these abnormalities(P<0.01).Studies of Caco-2 cells indicated that LPS increased the levels of occludin and claudin-1 as well as tight junction permeability,decreased the levels of junctional adhesion molecule C,and elevated intercellular permeability(P<0.01).HON treatment blocked these effects.Studies of macrophages indicated that LPS led to low nucl