Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over exte...Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring.Energy harvesting provides a potential solution to this problem in many applications.This paper reviews the characteristics and energy requirements of typical sensor network nodes,assesses a range of potential ambient energy sources,and outlines the characteristics of a wide range of energy conversion devices.It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density.展开更多
An enormous amount of long non-coding RNAs(lnc RNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many ln...An enormous amount of long non-coding RNAs(lnc RNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability,regulating m RNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.展开更多
Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)t...Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream.Due to its unique characteristics,such as rapid response at room temperature,bulk homogenized volume,high reaction efficiency,dielectric barrier discharge(DBD)plasma technology is considered one of the most promising techniques of NTP.This paper reviews recent progress of DBD plasma technology for abatement of VOCs.The principle of plasma generation in DBD and its configurations(electrode,discharge gap,dielectric barrier material,etc.)are discussed in details.Based on previously published literature,attention has been paid on the effect of DBD configuration on the removal of VOCs.Effect of various process parameters such as initial concentration,gas feeding rate,oxygen content and input power on VOCs removal are also considered.Moreover,the role of catalysis and inhibitors in VOCs removal by DBD system are presented.Finally,a modified configuration of the DBD reactor,i.e.double dielectric barrier discharge(DDBD)for the abatement of VOCs is discussed.It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode.These depositions can interfere with the performance of the reactor.展开更多
Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certi...Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.展开更多
Sweet and sour are the most important taste of blueberries,and they are produced by sugar and acid,respectively.Their contributions to the taste depend not only on the levels of sugar and acid,but also on the types an...Sweet and sour are the most important taste of blueberries,and they are produced by sugar and acid,respectively.Their contributions to the taste depend not only on the levels of sugar and acid,but also on the types and relative proportions of sugar and acid.Therefore,it is very important to evaluate the composition and levels of sugar and acid in blueberries.Regional differences and variety diversity also affect the sugar and acid characteristics of fruits.Therefore,this study selected two main producing regions in northern China(Weihai and Yingkou)to examine the sugar and acid characteristics of 11 common blueberry cultivars.The indexes measured included soluble sugars,organic acids,soluble solid content and titratable acidity.The results showed that glucose and fructose were the major sugars,and citric acid and quinic acid were the major organic acids.Correlation analysis showed that glucose,fructose,and sucrose were positively correlated with total sugar content;the citric acid content was positively correlated with the titratable acidity and total organic acids.Titratable acidity,glucose,fructose,sucrose,total sugar content,citric acid,shikimic acid and total acid content of the blueberries varied significantly between regions(P<0.05).In general,compared with Weihai blueberries,Yingkou blueberries had higher sugar content and lower acid content.The results of this study may provide useful references for the evaluation of sweet and sour flavors and cultivar selection of blueberries.展开更多
2,6-Dimethylnaphthalene(2,6-DMN) is a commercially important chemical for the production of polyethylenenaphthalate and polybutylene naphthalate. However, its complex synthesis procedure and high production cost signi...2,6-Dimethylnaphthalene(2,6-DMN) is a commercially important chemical for the production of polyethylenenaphthalate and polybutylene naphthalate. However, its complex synthesis procedure and high production cost significantly reduce the use of 2,6-DMN. In this study, the synthesis of 2,6-DMN was investigated with methylation of 2-methylnaphthalene(2-MN) over metal-loaded beta zeolite catalysts including beta zeolite, Cu-impregnated beta zeolite and Zr-impregnated beta zeolite. The experiments were performed in a fixed-bed reactor at atmospheric pressure under a nitrogen atmosphere. The reactor was operated at a temperature range of 400–500 °C and varying weight hourly space velocity between 1 and 3 h^(-1).The results demonstrated that 2,6-DMN can be synthesized by methylation of 2-MN over beta type zeolite catalysts.Besides 2,6-DMN, the product stream also contained other DMN isomers such as 2,7-DMN, 1,3-DMN, 1,2-DMN and 2,3-DMN. The activity and selectivity of beta zeolite catalyst were remarkably enhanced by Zr impregnation, whereas Cu modification of beta zeolite catalyst had an insignificant effect on its selectivity. The highest conversion of 2-MN reached81%, the highest ratio of 2,6-DMN/2,7-DMN reached 2.6 and the highest selectivity of 2,6-DMN was found to be 20% by using Zr-modified beta zeolite catalyst.展开更多
The effect of cold rolling and post-rolling heat treatment on the microstructural and electrochemical properties of the 316L stainless steel was investigated.Two-pass and four-pass cold-rolled stainless steel specimen...The effect of cold rolling and post-rolling heat treatment on the microstructural and electrochemical properties of the 316L stainless steel was investigated.Two-pass and four-pass cold-rolled stainless steel specimens were heat-treated by annealing at 900℃followed by quenching in water.During the cold rolling,the microstructure of the as-received specimen transformed from austenite to strain-inducedα′-martensite due to significant plastic deformation that also resulted in significant grain elongation(i.e.,~33%and 223%increases in the grain elongation after two and four rolling passes,respectively).The hardness of the heat-treated as-received specimen decreased from HV 190 to 146 due to the recovery and recrystallization of the austenite grain structure.The cyclic polarization scans of the as-rolled and heat-treated specimens were obtained in 0.9wt%NaCl solution.The pitting potential of the four-pass rolled specimen was significantly increased from 322.3 to 930.5 mV after post-rolling heat treatment.The beneficial effect of the heat treatment process was evident from~10-times-lower corrosion current density and two-orders-of-magnitude-lower passive current density of the heat-treated specimens compared with those of the as-rolled specimens.Similarly,appreciably lower corrosion rate(3.302×10^(−4)mm/a)and higher pitting resistance(1115.5 mV)were exhibited by the postrolled heat-treated specimens compared with the as-rolled 316L stainless steel specimens.展开更多
Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabol...Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.展开更多
Mechanical shear resistance of wheat grain is a significant concern for the designers and researchers related to the design of threshing,handling and processing machinery of the field crops.The grain mechanical proper...Mechanical shear resistance of wheat grain is a significant concern for the designers and researchers related to the design of threshing,handling and processing machinery of the field crops.The grain mechanical properties directly affect the machine geometry and its operational parameters.The present study was carried out to determine the shear resistance of five wheat varieties(Locally names;TD-02,Sindhu-1105,Benazir,China and SKD-118)influenced by moisture content(16.7%,18.7%and 19.5%)and loading rate(3 mm/s,6 mm/s and 9 mm/s).However,some physio-dimensional properties(length,width,thickness,slenderness ratio,surface area and sphericity)were obtained at different moisture contents.The results showed that the shear resistance reduced by increasing the moisture content and loading rate.The average shear resistance decreased from 10.45 N to 3.74 N for 3-9 mm/s loading rate at moisture content of 16.7%to 19.5%.Thus,the maximum correlation(r=0.905)of shear resistance obtained at 16.7%,whereas minimum correlation(r=0.692)obtained at 19.5%.The shear resistance of wheat grain was highly significant(p<0.05)at 9 mm/s for 19.5%.Shear resistance decreased with an increase in the moisture content in the grain whereas deformation is increasing with the increase of moisture content.However,the maximum bulk density of wheat grain obtained at 19.5%for SKD-118,while the minimum obtained at 16.7%for TD-02.It is recommended that the design and modification of wheat grain processing equipment should be executed on the physio-mechanical properties of grain varieties.展开更多
The invasive insect pest, red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date production, causing substantial economic damage. If uncontrolled, RPW leads the severely infested host tre...The invasive insect pest, red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date production, causing substantial economic damage. If uncontrolled, RPW leads the severely infested host tree to collapse and eventually die. The symbiotic associations with microorganisms and RPW in their gut may help their host insects’ establishment, development, nutrition assimilation, and survival. The objective of this research was the molecular characterization of the microbiome of RPW. In this study, the microbiome was compared among different tissues in females and males of RPW of three different morphs and larvae collected from date palm plantations in the Kingdom of Bahrain. A 251-bp segment of bacterial 16S rRNA was amplified by PCR, sequenced, and processed using the bioinformatics platform QIIME2. One ASV, corresponding to the obligate weevil symbiont Nardonella, predominated in adult female samples, constituting 56 ± 7% of total reads, but was less dominant in male samples (12 ± 3%) and larval samples (2.6 ± 1.9%). For females, samples that included reproductive tissues were almost entirely composed of Nardonella (88% - 99%). When Nardonella was excluded from analyses, there were no differences between adult females and adult males, but larval samples were more species-rich and differed in microbial composition from adults. There were no consistent differences in the microbiomes among morphs. Several specimens showed evidence of infection with host-specific strains of Spiroplasma-like members of the Entomoplasmatales, which are often pathogens or vertically transmitted symbionts. Such close microbial associates deserve additional attention as potential routes to control this destructive date palm pest.展开更多
The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat tr...The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.展开更多
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(...The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.展开更多
Inorganic resources can be detrimental to the environment when exploited.In comparison,organic resources help balance the soil’s carbon and nitrogen(C/N)ratio,enhance soil fertility and benefit ecological protection....Inorganic resources can be detrimental to the environment when exploited.In comparison,organic resources help balance the soil’s carbon and nitrogen(C/N)ratio,enhance soil fertility and benefit ecological protection.Current climate crises,rapid urbanization,and fast population growth are causing many natural forests to be converted to agricultural and industrial lands to fulfill ever-increasing food and developmental requirements.Application of different bio-resources becomes necessary for sustainable productivity of available lands.This study explores the effects of various organic amendments on the growth,morpho-physiological and biochemical attributes of three leguminous tree species:Dalbergia sissoo,Vachellia nilotica,and Acacia ampliceps,concerning sustainable productivity.One-year-old healthy,disease-free,and homogenous seedlings were used as study material in a greenhouse pot experiment.Four organic amendments,i.e.,compost(CMP),cow dung(CD),poultry manure(PM),and biochar(BC),along with a control(CK)treatment,were applied.Results showed that all the organic amendments performed significantly better(P<0.05)than CK.CD produced the most significant results,followed by BC application,while PM influence was the least.Among all treatments and species,the maximum values of root length,root biomass,chlorophyll content,carotenoids,catalase,and total phenolic content were recorded under the CD treatment.Whereas for plant height and collar diameter,no big differences were observed between CD and BC(P=0.054).While comparing species,V.nilotica growth was significantly enhanced under organic amendments,followed by A.ampliceps.Combined and comparative results of studied parameters conclude that CD and BC were the most effective organic amendments,which greatly improved the growth of experimental leguminous tree species;this makes these two biofertilizers a powerful tool for sustainable agricultural productivity.Our study contributes toward an enhanced understanding of plant’s morpho-physiological responses,biochemical展开更多
This research explores the dynamic relationships between ecological footprint,economic performance,financial development,energy usage,and foreign direct investment(FDI)in South Asian economies utilizing the panel data...This research explores the dynamic relationships between ecological footprint,economic performance,financial development,energy usage,and foreign direct investment(FDI)in South Asian economies utilizing the panel data from 1971 to 2018.In panel data analysis,conventional methods generally ignore the issues of cross-sectional dependency and the heterogenous nature of cross-sectional units.The other concern with the existing research is that most of the studies ignore the significance of ecological footprint while evaluating financial development and FDI as sources of environmental changes.The longterm relationship among the indicators is tested utilizing the Westerlund cointegration test.The findings support both environmental Kuznets curve and pollution haven hypotheses for South Asian economies.Besides,the empirical findings suggest that financial development increases environmental conservation while energy usage substantially disrupts the environment of the selected south Asian nations.Additionally,the heterogeneous causality analysis reveals the causal relationships between the variables.Thus,overall results recommend that the South Asian economies need to boost economic growth without compromising the environment,decrease fossil fuel usage,enhance financial sector growth and incentivize environmentally friendly FDI to conserve the environment in the region.展开更多
文摘Wireless sensor networks (WSNs) offer an attractive solution to many environmental,security,and process monitoring problems.However,one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without the need for dedicated wiring.Energy harvesting provides a potential solution to this problem in many applications.This paper reviews the characteristics and energy requirements of typical sensor network nodes,assesses a range of potential ambient energy sources,and outlines the characteristics of a wide range of energy conversion devices.It then proposes a method to compare these diverse sources and conversion mechanisms in terms of their normalised power density.
基金supported by the National Basic Research Program of China (973 Program Grant No. 2015CB943000)+1 种基金the National Natural Science Foundation of China (Grant Nos. 91519333 and 31471225)the Fundamental Research Funds for the Central Universities (Grant No. WK2070000034)
文摘An enormous amount of long non-coding RNAs(lnc RNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability,regulating m RNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.
文摘Volatile organic compounds(VOCs)released from the waste treatment facilities have become a significant issue because they are not only causing odor nuisance but may also hazard to human health.Non-thermal plasma(NTP)technologies are newly developed methods and became a research trend in recent years regarding the removal of VOCs from the air stream.Due to its unique characteristics,such as rapid response at room temperature,bulk homogenized volume,high reaction efficiency,dielectric barrier discharge(DBD)plasma technology is considered one of the most promising techniques of NTP.This paper reviews recent progress of DBD plasma technology for abatement of VOCs.The principle of plasma generation in DBD and its configurations(electrode,discharge gap,dielectric barrier material,etc.)are discussed in details.Based on previously published literature,attention has been paid on the effect of DBD configuration on the removal of VOCs.Effect of various process parameters such as initial concentration,gas feeding rate,oxygen content and input power on VOCs removal are also considered.Moreover,the role of catalysis and inhibitors in VOCs removal by DBD system are presented.Finally,a modified configuration of the DBD reactor,i.e.double dielectric barrier discharge(DDBD)for the abatement of VOCs is discussed.It was suggested that the DDBD plasma reactor could be used for higher conversion efficiency as well as for avoiding solid residue deposition on the electrode.These depositions can interfere with the performance of the reactor.
基金supported by the Doctoral Program of Higher Education(20130142120075)the Fundamental Research Funds for the Central Universities(HUST:2016YXMS032)National Key Research and Development Program of China(Grant No.2016YFB0700702)
文摘Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.
基金This research was supported by theAgricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2018-RIP-O7).
文摘Sweet and sour are the most important taste of blueberries,and they are produced by sugar and acid,respectively.Their contributions to the taste depend not only on the levels of sugar and acid,but also on the types and relative proportions of sugar and acid.Therefore,it is very important to evaluate the composition and levels of sugar and acid in blueberries.Regional differences and variety diversity also affect the sugar and acid characteristics of fruits.Therefore,this study selected two main producing regions in northern China(Weihai and Yingkou)to examine the sugar and acid characteristics of 11 common blueberry cultivars.The indexes measured included soluble sugars,organic acids,soluble solid content and titratable acidity.The results showed that glucose and fructose were the major sugars,and citric acid and quinic acid were the major organic acids.Correlation analysis showed that glucose,fructose,and sucrose were positively correlated with total sugar content;the citric acid content was positively correlated with the titratable acidity and total organic acids.Titratable acidity,glucose,fructose,sucrose,total sugar content,citric acid,shikimic acid and total acid content of the blueberries varied significantly between regions(P<0.05).In general,compared with Weihai blueberries,Yingkou blueberries had higher sugar content and lower acid content.The results of this study may provide useful references for the evaluation of sweet and sour flavors and cultivar selection of blueberries.
基金supported by The Scientific and Technological Research Council of Turkey [TüBITAK Project No.112M297]
文摘2,6-Dimethylnaphthalene(2,6-DMN) is a commercially important chemical for the production of polyethylenenaphthalate and polybutylene naphthalate. However, its complex synthesis procedure and high production cost significantly reduce the use of 2,6-DMN. In this study, the synthesis of 2,6-DMN was investigated with methylation of 2-methylnaphthalene(2-MN) over metal-loaded beta zeolite catalysts including beta zeolite, Cu-impregnated beta zeolite and Zr-impregnated beta zeolite. The experiments were performed in a fixed-bed reactor at atmospheric pressure under a nitrogen atmosphere. The reactor was operated at a temperature range of 400–500 °C and varying weight hourly space velocity between 1 and 3 h^(-1).The results demonstrated that 2,6-DMN can be synthesized by methylation of 2-MN over beta type zeolite catalysts.Besides 2,6-DMN, the product stream also contained other DMN isomers such as 2,7-DMN, 1,3-DMN, 1,2-DMN and 2,3-DMN. The activity and selectivity of beta zeolite catalyst were remarkably enhanced by Zr impregnation, whereas Cu modification of beta zeolite catalyst had an insignificant effect on its selectivity. The highest conversion of 2-MN reached81%, the highest ratio of 2,6-DMN/2,7-DMN reached 2.6 and the highest selectivity of 2,6-DMN was found to be 20% by using Zr-modified beta zeolite catalyst.
文摘The effect of cold rolling and post-rolling heat treatment on the microstructural and electrochemical properties of the 316L stainless steel was investigated.Two-pass and four-pass cold-rolled stainless steel specimens were heat-treated by annealing at 900℃followed by quenching in water.During the cold rolling,the microstructure of the as-received specimen transformed from austenite to strain-inducedα′-martensite due to significant plastic deformation that also resulted in significant grain elongation(i.e.,~33%and 223%increases in the grain elongation after two and four rolling passes,respectively).The hardness of the heat-treated as-received specimen decreased from HV 190 to 146 due to the recovery and recrystallization of the austenite grain structure.The cyclic polarization scans of the as-rolled and heat-treated specimens were obtained in 0.9wt%NaCl solution.The pitting potential of the four-pass rolled specimen was significantly increased from 322.3 to 930.5 mV after post-rolling heat treatment.The beneficial effect of the heat treatment process was evident from~10-times-lower corrosion current density and two-orders-of-magnitude-lower passive current density of the heat-treated specimens compared with those of the as-rolled specimens.Similarly,appreciably lower corrosion rate(3.302×10^(−4)mm/a)and higher pitting resistance(1115.5 mV)were exhibited by the postrolled heat-treated specimens compared with the as-rolled 316L stainless steel specimens.
基金Supported by Higher Education Commission of Pakistan(Grant PIN No.074-1053-Bm4-207)
文摘Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.
基金This work is financially supported by the National Key Research of Development Program of China(Grant No.2016YFD0702004)the National Natural Science Foundation of China(Grant No.51605196)+3 种基金the Jiangsu Key Research and Development Program of China(Grant No.BE2016356)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20160532)the National Science Foundation for Post-doctoral Scientists of China(Grant No.2016M591788)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant No.17KJB416003).
文摘Mechanical shear resistance of wheat grain is a significant concern for the designers and researchers related to the design of threshing,handling and processing machinery of the field crops.The grain mechanical properties directly affect the machine geometry and its operational parameters.The present study was carried out to determine the shear resistance of five wheat varieties(Locally names;TD-02,Sindhu-1105,Benazir,China and SKD-118)influenced by moisture content(16.7%,18.7%and 19.5%)and loading rate(3 mm/s,6 mm/s and 9 mm/s).However,some physio-dimensional properties(length,width,thickness,slenderness ratio,surface area and sphericity)were obtained at different moisture contents.The results showed that the shear resistance reduced by increasing the moisture content and loading rate.The average shear resistance decreased from 10.45 N to 3.74 N for 3-9 mm/s loading rate at moisture content of 16.7%to 19.5%.Thus,the maximum correlation(r=0.905)of shear resistance obtained at 16.7%,whereas minimum correlation(r=0.692)obtained at 19.5%.The shear resistance of wheat grain was highly significant(p<0.05)at 9 mm/s for 19.5%.Shear resistance decreased with an increase in the moisture content in the grain whereas deformation is increasing with the increase of moisture content.However,the maximum bulk density of wheat grain obtained at 19.5%for SKD-118,while the minimum obtained at 16.7%for TD-02.It is recommended that the design and modification of wheat grain processing equipment should be executed on the physio-mechanical properties of grain varieties.
文摘The invasive insect pest, red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date production, causing substantial economic damage. If uncontrolled, RPW leads the severely infested host tree to collapse and eventually die. The symbiotic associations with microorganisms and RPW in their gut may help their host insects’ establishment, development, nutrition assimilation, and survival. The objective of this research was the molecular characterization of the microbiome of RPW. In this study, the microbiome was compared among different tissues in females and males of RPW of three different morphs and larvae collected from date palm plantations in the Kingdom of Bahrain. A 251-bp segment of bacterial 16S rRNA was amplified by PCR, sequenced, and processed using the bioinformatics platform QIIME2. One ASV, corresponding to the obligate weevil symbiont Nardonella, predominated in adult female samples, constituting 56 ± 7% of total reads, but was less dominant in male samples (12 ± 3%) and larval samples (2.6 ± 1.9%). For females, samples that included reproductive tissues were almost entirely composed of Nardonella (88% - 99%). When Nardonella was excluded from analyses, there were no differences between adult females and adult males, but larval samples were more species-rich and differed in microbial composition from adults. There were no consistent differences in the microbiomes among morphs. Several specimens showed evidence of infection with host-specific strains of Spiroplasma-like members of the Entomoplasmatales, which are often pathogens or vertically transmitted symbionts. Such close microbial associates deserve additional attention as potential routes to control this destructive date palm pest.
文摘The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2022–00165798)Anhui Natural Science Foundation(No.2308085MF211)The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant Number(R.G.P.2/491/45).
文摘The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.
基金supported by funding from the Central South University of Forestry and Technology and the Hunan Province Educational Department Funding(No.70702-45200003).
文摘Inorganic resources can be detrimental to the environment when exploited.In comparison,organic resources help balance the soil’s carbon and nitrogen(C/N)ratio,enhance soil fertility and benefit ecological protection.Current climate crises,rapid urbanization,and fast population growth are causing many natural forests to be converted to agricultural and industrial lands to fulfill ever-increasing food and developmental requirements.Application of different bio-resources becomes necessary for sustainable productivity of available lands.This study explores the effects of various organic amendments on the growth,morpho-physiological and biochemical attributes of three leguminous tree species:Dalbergia sissoo,Vachellia nilotica,and Acacia ampliceps,concerning sustainable productivity.One-year-old healthy,disease-free,and homogenous seedlings were used as study material in a greenhouse pot experiment.Four organic amendments,i.e.,compost(CMP),cow dung(CD),poultry manure(PM),and biochar(BC),along with a control(CK)treatment,were applied.Results showed that all the organic amendments performed significantly better(P<0.05)than CK.CD produced the most significant results,followed by BC application,while PM influence was the least.Among all treatments and species,the maximum values of root length,root biomass,chlorophyll content,carotenoids,catalase,and total phenolic content were recorded under the CD treatment.Whereas for plant height and collar diameter,no big differences were observed between CD and BC(P=0.054).While comparing species,V.nilotica growth was significantly enhanced under organic amendments,followed by A.ampliceps.Combined and comparative results of studied parameters conclude that CD and BC were the most effective organic amendments,which greatly improved the growth of experimental leguminous tree species;this makes these two biofertilizers a powerful tool for sustainable agricultural productivity.Our study contributes toward an enhanced understanding of plant’s morpho-physiological responses,biochemical
文摘This research explores the dynamic relationships between ecological footprint,economic performance,financial development,energy usage,and foreign direct investment(FDI)in South Asian economies utilizing the panel data from 1971 to 2018.In panel data analysis,conventional methods generally ignore the issues of cross-sectional dependency and the heterogenous nature of cross-sectional units.The other concern with the existing research is that most of the studies ignore the significance of ecological footprint while evaluating financial development and FDI as sources of environmental changes.The longterm relationship among the indicators is tested utilizing the Westerlund cointegration test.The findings support both environmental Kuznets curve and pollution haven hypotheses for South Asian economies.Besides,the empirical findings suggest that financial development increases environmental conservation while energy usage substantially disrupts the environment of the selected south Asian nations.Additionally,the heterogeneous causality analysis reveals the causal relationships between the variables.Thus,overall results recommend that the South Asian economies need to boost economic growth without compromising the environment,decrease fossil fuel usage,enhance financial sector growth and incentivize environmentally friendly FDI to conserve the environment in the region.