Mass measurement is an essential analytical tool in the characterization of materials.Here we present a method for measuring the mass of an individual nanoparticle which has a fg-level mass.This method enables a tempe...Mass measurement is an essential analytical tool in the characterization of materials.Here we present a method for measuring the mass of an individual nanoparticle which has a fg-level mass.This method enables a temperatureindependent mass measurement with the assistance of a sinusoidal electrostatic driving force.With this approach,we successfully track the change in properties of an optically levitated nanoparticle,such as mass,temperature,and electric charge,with air pressure.An abrupt change in the mass of silica nanoparticles is found to violate the Zhuravlev model.This method can be utilized to extend the mass analysis of materials,such as thermogravimetric analysis,to individual microor nano-particles.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104438 and 62225506)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-049)the Fundamental Research Funds for the Central Universities.
文摘Mass measurement is an essential analytical tool in the characterization of materials.Here we present a method for measuring the mass of an individual nanoparticle which has a fg-level mass.This method enables a temperatureindependent mass measurement with the assistance of a sinusoidal electrostatic driving force.With this approach,we successfully track the change in properties of an optically levitated nanoparticle,such as mass,temperature,and electric charge,with air pressure.An abrupt change in the mass of silica nanoparticles is found to violate the Zhuravlev model.This method can be utilized to extend the mass analysis of materials,such as thermogravimetric analysis,to individual microor nano-particles.